Skip to main content
Log in

Transcription Factor SCIRR69 Involved in the Activation of Brain-Derived Neurotrophic Factor Gene Promoter II in Mechanically Injured Neurons

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The spinal cord injury and regeneration-related gene #69 (SCIRR69), which was identified in our screen for genes upregulated after spinal cord injury, encode a protein belonging to the cAMP response element-binding protein (CREB)/ATF family of transcription factors. Our previous study showed that SCIRR69 functions as a transcriptional activator. However, the target gene regulated by SCIRR69 and its roles in injured neurons remain unknown. In this study, we showed that SCIRR69 is widely distributed in the central nervous system. Full-length SCIRR69 is an endoplasmic reticulum-bound protein. Following mechanical injury to neurons, SCIRR69 was induced and proteolytically cleaved by site-1 and site-2 proteases, and the proteolytically cleaved SCIRR69 (p60-SCIRR69) was translocated to the nucleus where it bound to brain-derived neurotrophic factor (BDNF) gene promoter II. In addition, loss- and gain-of-function studies confirmed that SCIRR69 is involved in the regulation of BDNF expression in injured neurons. As expected, the culture supernatants of PC12 cells stably expressing p60-SCIRR69 contained higher levels of BDNF, and more remarkably promoted neurite outgrowth in a spinal cord slice culture model in vitro than the supernatants of control cells. These results suggest that SCIRR69 is a novel regulator of the BDNF gene and may play an important role in the repair and/or regeneration of damaged neural tissues by specifically activating BDNF promoter II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aid, T., Kazantseva, A., Piirsoo, M., Palm, K., & Timmusk, T. (2007). Mouse and rat BDNF gene structure and expression revisited. Journal of Neuroscience Research, 85, 525–535.

    Article  PubMed  CAS  Google Scholar 

  • Bamber, N. I., Li, H., Lu, X., Oudega, M., Aebischer, P., & Xu, X. M. (2001). Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. The European journal of Neuroscience, 13, 257–268.

    PubMed  CAS  Google Scholar 

  • Blesch, A., & Tuszynski, M. H. (2007). Transient growth factor delivery sustains regenerated axons after spinal cord injury. The Journal of Neuroscience, 27, 10535–10545.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. S., & Goldstein, J. L. (1997). The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell, 89, 331–340.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. S., Ye, J., Rawson, R. B., & Goldstein, J. L. (2000). Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans. Cell, 100, 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W. G., Chang, Q., Lin, Y., Meissner, A., West, A. E., Griffith, E. C., et al. (2003a). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 302, 885–889.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W. G., West, A. E., Tao, X., Corfas, G., Szentirmay, M. N., Sawadogo, M., et al. (2003b). Upstream stimulatory factors are mediators of Ca2+-responsive transcription in neurons. The Journal of Neuroscience, 23, 2572–2581.

    PubMed  CAS  Google Scholar 

  • Garriga-Canut, M., Schoenike, B., Qazi, R., Bergendahl, K., Daley, T. J., Pfender, R. M., et al. (2006). 2-Deoxy-d-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nature Neuroscience, 9, 1382–1387.

    Article  PubMed  CAS  Google Scholar 

  • Herdegen, T., Fiallos-Estrada, C. E., Schmid, W., Bravo, R., & Zimmermann, M. (1992). The transcription factors c-JUN, JUN D and CREB, but not FOS and KROX-24, are differentially regulated in axotomized neurons following transection of rat sciatic nerve. Brain Research Molecular Brain Research, 14, 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Hoesche, C., Bartsch, P., & Kilimann, M. W. (1995). The CRE consensus sequence in the synapsin I gene promoter region confers constitutive activation but no regulation by cAMP in neuroblastoma cells. Biochimica et Biophysica Acta, 1261, 249–256.

    Article  PubMed  Google Scholar 

  • Huang, H., Que, H., Liu, T., Ma, Z., & Liu, S. (2009). Preparation and characterization of murine monoclonal antibodies against rat spinal cord injury and regeneration related protein no. 69. Hybridoma, 28, 27–31.

    Article  PubMed  Google Scholar 

  • Ikeda, O., Murakami, M., Ino, H., Yamazaki, M., Nemoto, T., Koda, M., et al. (2001). Acute up-regulation of brain-derived neurotrophic factor expression resulting from experimentally induced injury in the rat spinal cord. Acta Neuropathologica, 102, 239–245.

    PubMed  CAS  Google Scholar 

  • Jiang, X., Tian, F., Du, Y., Copeland, N. G., Jenkins, N. A., Tessarollo, L., et al. (2008). BHLHB2 controls Bdnf promoter 4 activity and neuronal excitability. The Journal of Neuroscience, 28, 1118–1130.

    Article  PubMed  CAS  Google Scholar 

  • Kehat, I., Hasin, T., & Aronheim, A. (2006). The role of basic leucine zipper protein-mediated transcription in physiological and pathological myocardial hypertrophy. Annals of the New York Academy of Sciences, 1080, 97–109.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, S., Murakami, T., Tatsumi, K., Ogata, M., Kanemoto, S., Otori, K., et al. (2005). OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nature Cell Biology, 7, 186–194.

    Article  PubMed  CAS  Google Scholar 

  • Li, W. P., Xian, C., Rush, R. A., & Zhou, X. F. (1999). Upregulation of brain-derived neurotrophic factor and neuropeptide Y in the dorsal ascending sensory pathway following sciatic nerve injury in rat. Neuroscience Letters, 260, 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y., Bloodgood, B. L., Hauser, J. L., Lapan, A. D., Koon, A. C., Kim, T. K., et al. (2008). Activity-dependent regulation of inhibitory synapse development by Npas4. Nature, 455, 1198–1204.

    Article  PubMed  CAS  Google Scholar 

  • Lubin, F. D., Ren, Y., Xu, X., & Anderson, A. E. (2007). Nuclear factor-kappa B regulates seizure threshold and gene transcription following convulsant stimulation. Journal of Neurochemistry, 103, 1381–1395.

    Article  PubMed  CAS  Google Scholar 

  • Lyons, M. R., Schwarz, C. M., & West, A. E. (2012). Members of the myocyte enhancer factor 2 transcription factor family differentially regulate Bdnf transcription in response to neuronal depolarization. The Journal of Neuroscience, 32, 12780–12785.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Z., Liu, T., Li, X., Zhou, T., Xiao, L., Que, H., et al. (2006). Identification of up-regulated genes after complete spinal cord transection in adult rats. Cellular and Molecular Neurobiology, 26, 277–288.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Z., Que, H., Ni, Y., Huang, H., Liu, Y., Liu, T., et al. (2012). Cloning and characterization of SCIRR69: A novel transcriptional factor belonging to the CREB/ATF family. Molecular Biology Reports, 39, 7665–7672.

    Article  PubMed  CAS  Google Scholar 

  • Montminy, M. R., Sevarino, K. A., Wagner, J. A., Mandel, G., & Goodman, R. H. (1986). Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proceedings of the National Academy of Sciences of the United States of America, 83, 6682–6686.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, T., Kondo, S., Ogata, M., Kanemoto, S., Saito, A., Wanaka, A., et al. (2006). Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress. Journal of Neurochemistry, 96, 1090–1100.

    Article  PubMed  CAS  Google Scholar 

  • Nikaido, T., Iseki, K., Mori, T., Takaki, H., Yokoya, S., Hagino, S., et al. (2002). Expression of OASIS, a CREB/ATF family transcription factor, in CNS lesion and its transcriptional activity. Brain Research Molecular Brain Research, 108, 129–138.

    Article  PubMed  CAS  Google Scholar 

  • Omori, Y., Imai, J., Watanabe, M., Komatsu, T., Suzuki, Y., Kataoka, K., et al. (2001). CREB-H: A novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression. Nucleic Acids Research, 29, 2154–2162.

    Article  PubMed  CAS  Google Scholar 

  • Panagopoulos, I., Moller, E., Dahlen, A., Isaksson, M., Mandahl, N., Vlamis-Gardikas, A., et al. (2007). Characterization of the native CREB3L2 transcription factor and the FUS/CREB3L2 chimera. Genes, Chromosomes and Cancer, 46, 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Pruunsild, P., Sepp, M., Orav, E., Koppel, I., & Timmusk, T. (2011). Identification of cis-elements and transcription factors regulating neuronal activity-dependent transcription of human BDNF gene. The Journal of Neuroscience, 31, 3295–3308.

    Article  PubMed  CAS  Google Scholar 

  • Que, H., Liu, Y., Jia, Y., & Liu, S. (2011). Establishment and assessment of a simple and easily reproducible incision model of spinal cord neuron cells in vitro. In Vitro Cellular and Developmental Biology. Animal, 47, 558–564.

    Article  PubMed  Google Scholar 

  • Ribeiro, A., Brown, A., & Lee, K. A. (1994). An in vivo assay for members of the cAMP response element-binding protein family of transcription factors. The Journal of Biological Chemistry, 269, 31124–31128.

    PubMed  CAS  Google Scholar 

  • Roy, B., & Lee, A. S. (1999). The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Research, 27, 1437–1443.

    Article  PubMed  CAS  Google Scholar 

  • Shen, J., & Prywes, R. (2005). ER stress signaling by regulated proteolysis of ATF6. Methods, 35, 382–389.

    Article  PubMed  CAS  Google Scholar 

  • Shieh, P. B., Hu, S. C., Bobb, K., Timmusk, T., & Ghosh, A. (1998). Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron, 20, 727–740.

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi, A., Sakaya, H., Kisukeda, T., Fushiki, H., & Tsuda, M. (2002). Involvement of an upstream stimulatory factor as well as cAMP-responsive element-binding protein in the activation of brain-derived neurotrophic factor gene promoter I. The Journal of Biological Chemistry, 277, 35920–35931.

    Article  PubMed  CAS  Google Scholar 

  • Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J., & Greenberg, M. E. (1998). Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron, 20, 709–726.

    Article  PubMed  CAS  Google Scholar 

  • Tao, X., West, A. E., Chen, W. G., Corfas, G., & Greenberg, M. E. (2002). A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF. Neuron, 33, 383–395.

    Article  PubMed  CAS  Google Scholar 

  • Timmusk, T., Lendahl, U., Funakoshi, H., Arenas, E., Persson, H., & Metsis, M. (1995). Identification of brain-derived neurotrophic factor promoter regions mediating tissue-specific, axotomy-, and neuronal activity-induced expression in transgenic mice. The Journal of Cell Biology, 128, 185–199.

    Article  PubMed  CAS  Google Scholar 

  • Timmusk, T., Palm, K., Lendahl, U., & Metsis, M. (1999). Brain-derived neurotrophic factor expression in vivo is under the control of neuron-restrictive silencer element. Journal of Biological Chemistry, 274, 1078–1084.

    PubMed  CAS  Google Scholar 

  • Timmusk, T., Palm, K., Metsis, M., Reintam, T., Paalme, V., Saarma, M., et al. (1993). Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron, 10, 475–489.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Shen, J., Arenzana, N., Tirasophon, W., Kaufman, R. J., & Prywes, R. (2000). Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. Journal of Biological Chemistry, 275, 27013–27020.

    PubMed  CAS  Google Scholar 

  • Ye, J. H., & Houle, J. D. (1997). Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Experimental Neurology, 143, 70–81.

    Article  PubMed  CAS  Google Scholar 

  • Ye, J., Rawson, R. B., Komuro, R., Chen, X., Dave, U. P., Prywes, R., et al. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Molecular Cell, 6, 1355–1364.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, H., Haze, K., Yanagi, H., Yura, T., & Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. Journal of Biological Chemistry, 273, 33741–33749.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., et al. (2000). ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Molecular and Cellular Biology, 20, 6755–6767.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X. F., Parada, L. F., Soppet, D., & Rush, R. A. (1993). Distribution of trkB tyrosine kinase immunoreactivity in the rat central nervous system. Brain Research, 622, 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Zuccato, C., Tartari, M., Crotti, A., Goffredo, D., Valenza, M., Conti, L., et al. (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genetics, 35, 76–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Chinese National Basic Research Program (grant number 2009CB918301) and Beijing Municipal Natural Science Foundation (grant number 5112027).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Liu.

Additional information

Yong Liu, Haiping Que, and Zhenlian Ma contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Que, H., Ma, Z. et al. Transcription Factor SCIRR69 Involved in the Activation of Brain-Derived Neurotrophic Factor Gene Promoter II in Mechanically Injured Neurons. Neuromol Med 15, 605–622 (2013). https://doi.org/10.1007/s12017-013-8245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8245-y

Keywords

Navigation