Skip to main content
Log in

Global MicroRNA Expression Profiling Reveals Differential Expression of Target Genes in 6-Hydroxydopamine-injured MN9D Cells

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Recent evidence indicates that microRNAs (miRNAs) play a key role in neurodegenerative diseases. However, little is known about how these small RNAs contribute to dopaminergic neuronal apoptosis. Here, we profiled the expression of miRNAs in MN9D cells with and without 6-hydroxydopamine (6-OHDA) treatment by miRCURY™ LNA microRNA arrays. We identified six miRNAs (miR-668-3p, let-7d-3p, miR-3077-3p, miR-665-5p, miR-99b-3p, and miR-323-3p) that were significantly lower and five miRNAs (miR-875, miR-207, miR-425-5p, miR-19b-3p, and miR-338-3p) that were significantly higher after 6-OHDA treatment. Among them, five have been demonstrated to be implicated in neurodegenerative diseases. Consistent with our prediction, the deregulated miRNA’s target mRNAs, such as peroxiredoxin III (Prx III) and Myc, also showed changes in their expression levels. Furthermore, using a dual-luciferase reporter assay, we confirmed that Prx III was a direct target gene of miR-875. Taken together, these findings demonstrate that changes in miRNA expression occur after 6-OHDA treatment and suggest that miRNAs and their predicted targets have a potential role in apoptosis of MN9D cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asikainen, S., Rudgalvyte, M., Heikkinen, L., et al. (2010). Global microRNA expression profiling of Caenorhabditis elegans Parkinson’s disease models. Journal of Molecular Neuroscience, 41(1), 210–218.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, A. I., Garrison, S. P., Zambetti, G. P., et al. (2011). 6-OHDA generated ROS induces DNA damage and p53- and PUMA-dependent cell death. Molecular Neurodegeneration, 6(1), 2.

    Article  PubMed  CAS  Google Scholar 

  • Bové, J., Prou, D., Perier, C., et al. (2005). Toxin-induced models of Parkinson’s disease. NeuroRx, 2(3), 484–494.

    Article  PubMed  Google Scholar 

  • Brownawell, A. M., & Macara, I. G. (2002). Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. Journal of Cell Biology, 156(1), 53–64.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. X., Huang, S. Y., Zhang, L., et al. (2005). Synaptophysin enhances the neuroprotection of VMAT2 in MPP+-induced toxicity in MN9D cells. Neurobiology of Diseases, 19(3), 419–426.

    Article  Google Scholar 

  • Choi, H. K., Won, L., Roback, J. D., et al. (1992). Specific modulation of dopamine expression in neuronal hybrid cells by primary cells from different brain regions. Proceedings of the National Academy of Sciences of the United States of America, 89(19), 8943–8947.

    Article  PubMed  CAS  Google Scholar 

  • Cogswell, J. P., Ward, J., Taylor, I. A., et al. (2008). Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. Journal of Alzheimer’s Disease, 14(1), 27–41.

    PubMed  CAS  Google Scholar 

  • Delay, C., Calon, F., Mathews, P., et al. (2011). Alzheimer-specific variants in the 3′UTR of Amyloid precursor protein affect microRNA function. Molecular Neurodegeneration, 6, 70.

    Article  PubMed  CAS  Google Scholar 

  • Dephoure, N., Zhou, C., Villén, J., et al. (2008). A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A, 105(31), 10762–10767.

    Article  PubMed  CAS  Google Scholar 

  • Ding, Y. M., Jaumotte, J. D., Signore, A. P., et al. (2004). Effects of 6-hydroxydopamine on primary cultures of substantia nigra: Specific damage to dopamine neurons and the impact of glial cell line-derived neurotrophic factor. Journal of Neurochemistry, 89(3), 776–787.

    Article  PubMed  CAS  Google Scholar 

  • Doxakis, E. (2010). Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. Journal of Biological Chemistry, 285(17), 12726–12734.

    Article  PubMed  CAS  Google Scholar 

  • Enciu, A. M., Popescu, B. O., & Gheorghisan-Galateanu, A. (2012). MicroRNAs in brain development and degeneration. Molecular Biology Reports, 39(3), 2243–2252.

    Article  PubMed  CAS  Google Scholar 

  • Gehrke, S., Imai, Y., Sokol, N., et al. (2010). Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature, 466(7306), 637–641.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B. (2006). Oxidative stress and neurodegeneration: Where are we now? Journal of Neurochemistry, 97(6), 1634–1658.

    Article  PubMed  CAS  Google Scholar 

  • Hébert, S. S., Horré, K., Nicolaï, L., et al. (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proceedings of the National Academy of Sciences of the United States of America, 105(17), 6415–6420.

    Article  PubMed  Google Scholar 

  • Heine, G. F., Horwitz, A. A., Parvin, J. D., et al. (2008). Multiple mechanisms contribute to inhibit transcription in response to DNA damage. Journal of Biological Chemistry, 283(15), 9555–9561.

    Article  PubMed  CAS  Google Scholar 

  • Jang, H. H., Lee, K. O., Chi, Y. H., et al. (2004). Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell, 117(5), 625–635.

    Article  PubMed  CAS  Google Scholar 

  • Junn, E., Lee, K. W., Jeong, B. S., et al. (2009). Repression of alpha-synuclein expression and toxicity by microRNA-7. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13052–13057.

    Article  PubMed  CAS  Google Scholar 

  • Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10(2), 126–139.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., Inoue, K., Ishii, J., et al. (2007). A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317(5842), 1220–1224.

    Article  PubMed  CAS  Google Scholar 

  • Klare, J. P., de Orué, Ortiz, & Lucana, D. (2005). Microarray expression profiling identifies early signaling transcripts associated with 6-OHDA-induced dopaminergic cell death. Antioxidants & Redox Signaling, 16(7), 639–648.

    Article  Google Scholar 

  • Klintworth, H., Newhouse, K., Li, T., et al. (2007). Activation of c-Jun N-terminal protein kinase is a common mechanism underlying paraquat- and rotenone-induced dopaminergic cell apoptosis. Toxicological Sciences, 97(1), 149–162.

    Article  PubMed  CAS  Google Scholar 

  • Krapfenbauer, K., Engidawork, E., Cairns, N., et al. (2003). Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Research, 967(1–2), 152–160.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, R., Agarwal, A. K., & Seth, P. K. (1995). Free radical-generated neurotoxicity of 6-hydroxydopamine. Journal of Neurochemistry, 64(4), 1703–1707.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H. P., Kudo, W., Zhu, X., et al. (2011). Early induction of c-Myc is associated with neuronal cell death. Neuroscience Letters, 505(2), 124–127.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Q., Liou, A. K., Ding, Y., et al. (2004). 6-Hydroxydopamine induces dopaminergic cell degeneration via a caspase-9-mediated apoptotic pathway that is attenuated by caspase-9dn expression. Journal of Neuroscience Research, 77(5), 747–761.

    Article  PubMed  CAS  Google Scholar 

  • Noelker, C., Schwake, M., Balzer-Geldsetzer, M., et al. (2012). Differentially expressed gene profile in the 6-hydroxy-dopamine-induced cell culture model of Parkinson’s disease. Neuroscience Letters, 507(1), 10–15.

    Article  PubMed  CAS  Google Scholar 

  • Pothof, J., Verkaik, N. S., van IJcken, W., et al. (2009). MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO Journal, 28(14), 2090–2099.

    Article  PubMed  CAS  Google Scholar 

  • Proietti-De-Santis, L., Drané, P., & Egly, J. M. (2006). Cockayne syndrome B protein regulates the transcriptional program after UV irradiation. EMBO Journal, 25(9), 1915–1923.

    Article  PubMed  CAS  Google Scholar 

  • Rhee, S. G., Chae, H. Z., & Kim, K. (2005). Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radical Biology & Medicine, 38(12), 1543–1552.

    Article  CAS  Google Scholar 

  • Rhee, S. G., Kang, S. W., Chang, T. S., et al. (2001). Peroxiredoxin, a novel family of peroxidases. IUBMB Life, 52(1–2), 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Rockx, D. A., Mason, R., van Hoffen, A., et al. (2000). UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proceedings of the National Academy of Sciences of the United States of America, 97(19), 10503–10508.

    Article  PubMed  CAS  Google Scholar 

  • Saba, R., Goodman, C. D., Huzarewich, R. L., et al. (2008). A miRNA signature of prion induced neurodegeneration. PLoS ONE, 3(11), e3652.

    Article  PubMed  Google Scholar 

  • Sampson, V. B., Rong, N. H., Han, J., et al. (2007). MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Research, 67(20), 9762–9770.

    Article  PubMed  CAS  Google Scholar 

  • Shioya, M., Obayashi, S., Tabunoki, H., et al. (2010). Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathology and Applied Neurobiology, 36(4), 320–330.

    Article  PubMed  CAS  Google Scholar 

  • Sleiman, S. F., Langley, B. C., Basso, M., et al. (2011). Mithramycin is a gene-selective Sp1 inhibitor that identifies a biological intersection between cancer and neurodegeneration. Journal of Neuroscience, 31(18), 6858–6870.

    Article  PubMed  CAS  Google Scholar 

  • Sonntag, K. C. (2010). MicroRNAs and deregulated gene expression networks in neurodegeneration. Brain Research, 1338, 48–57.

    Article  PubMed  CAS  Google Scholar 

  • Soto-Otero, R., Méndez-Alvarez, E., Hermida-Ameijeiras, A., et al. (2000). Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: Potential implication in relation to the pathogenesis of Parkinson’s disease. Journal of Neurochemistry, 74(4), 1605–1612.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H. I., Yamagata, K., Sugimoto, K., et al. (2009). Modulation of microRNA processing by p53. Nature, 460(7254), 529–533.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81101899) and a project funded by the Priority Academic Program Development of Higher Education Institution (PAPD).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian-Shuai Gao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12017_2013_8244_MOESM1_ESM.jpg

6-OHDA decreases viability of MN9D cells. Cells were incubated for 30 min in different concentrations of 6-OHDA followed by 24 h resting period. The data are expressed as a percentage of control cells ± standard errors of the mean (n = 5) * p < 0.05 versus control cells. Control: cells without treatment. Vehicle: cells treated with physiological saline containing 0.15 % ascorbic acid. (JPEG 130 kb)

12017_2013_8244_MOESM2_ESM.jpg

6-OHDA treatment induces apoptotic nuclear morphology in MN9D cells. Cells were incubated for 30 min in different concentrations of 6-OHDA followed by 24 h resting period. Then cells were stained with the DNA-binding stain fluorochrome Hoechst 33258. White arrows represent the condensed and fragmented nucleus of apoptotic cells. The percentage of Hoechst-positive apoptotic cells per visual field was determined (the number of Hoechst-positive cells per field/total number of cells per field). Approximately 100 cells were counted in each of 5 randomly selected fields. Scale bars represent 20 μm. A, Control: cells without treatment. B, Vehicle: cells treated with physiological saline containing 0.15 % ascorbic acid, C~H, 6-OHDA treated cells (100~600 μM) (n = 5) (JPEG 3475 kb)

12017_2013_8244_MOESM3_ESM.jpg

6-OHDA induces cell apoptosis as measured by flow cytometry assay. Cells were incubated for 30 min in different concentrations of 6-OHDA and followed by 24 h resting period. Then the apoptotic proportion of cells was analyzed by Annexin V-FITC/PI flow cytometry. A, Control: cells without treatment. B, Vehicle: cells treated with physiological saline containing 0.15 % ascorbic acid C~H, 6-OHDA treated cells (100~600 μM) (n = 5) (JPEG 380 kb)

12017_2013_8244_MOESM4_ESM.jpg

6-OHDA induces the cleavage of caspase-3. Cells were incubated with 6-OHDA 100 μM for 30 min and followed by 24 h resting period. Western blotting analysis indicated that the 6-OHDA treatment of MN9D cells could increase the expression of cleaved caspase-3. Levels of cleaved caspase-3 were normalized to β-actin levels. * p < 0.05 versus control cells. (n = 3) (JPEG 675 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Chen, HZ., Chen, FF. et al. Global MicroRNA Expression Profiling Reveals Differential Expression of Target Genes in 6-Hydroxydopamine-injured MN9D Cells. Neuromol Med 15, 593–604 (2013). https://doi.org/10.1007/s12017-013-8244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8244-z

Keywords

Navigation