Skip to main content

Advertisement

Log in

The Eosinophil in Health and Disease: from Bench to Bedside and Back

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Historically, eosinophils have been considered as end-stage cells involved in host protection against parasitic infection and in the mechanisms of hypersensitivity. However, later studies have shown that this multifunctional cell is also capable of producing immunoregulatory cytokines and soluble mediators and is involved in tissue homeostasis and modulation of innate and adaptive immune responses. In this review, we summarize the biology of eosinophils, including the function and molecular mechanisms of their granule proteins, cell surface markers, mediators, and pathways, and present comprehensive reviews of research updates on the genetics and epigenetics of eosinophils. We describe recent advances in the development of epigenetics of eosinophil-related diseases, especially in asthma. Likewise, recent studies have provided us with a more complete appreciation of how eosinophils contribute to the pathogenesis of various diseases, including hypereosinophilic syndrome (HES). Over the past decades, the definition and criteria of HES have been evolving with the progress of our understanding of the disease and some aspects of this disease still remain controversial. We also review recent updates on the genetic and molecular mechanisms of HES, which have spurred dramatic developments in the clinical strategies of diagnosis and treatment for this heterogeneous group of diseases. The conclusion from this review is that the biology of eosinophils provides significant insights as to their roles in health and disease and, furthermore, demonstrates that a better understanding of eosinophil will accelerate the development of new therapeutic strategies for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174

    Article  CAS  PubMed  Google Scholar 

  2. Gleich GJ, Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39:177–253

    Article  CAS  PubMed  Google Scholar 

  3. Hogan SP, Rosenberg HF, Moqbel R et al (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38:709–750

    Article  CAS  PubMed  Google Scholar 

  4. Yang YH, Chiang BL (2014) Novel approaches to food allergy. Clin Rev Allergy Immunol 46:250–257

    Article  CAS  PubMed  Google Scholar 

  5. Weinstock JV (2014) Do we need worms to promote immune health? Clin Rev Allergy Immunol 1–5. doi:10.1007/s12016-014-8458-3

  6. Hansel TT, De Vries IJ, Iff T et al (1991) An improved immunomagnetic procedure for the isolation of highly purified human blood eosinophils. J Immunol Methods 145:105–110

    Article  CAS  PubMed  Google Scholar 

  7. Hansel TT, De Vries IJ, Carballido JM et al (1992) Induction and function of eosinophil intercellular adhesion molecule-1 and HLA-DR. J Immunol 149:2130–2136

    CAS  PubMed  Google Scholar 

  8. Chu VT, Frohlich A, Steinhauser G et al (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 12:151–159

    Article  CAS  PubMed  Google Scholar 

  9. Wu D, Molofsky AB, Liang HE et al (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Samoszuk M (1997) Eosinophils and human cancer. Histol Histopathol 12:807–812

    CAS  PubMed  Google Scholar 

  11. Meleg-Smith S, Gauthier PM (2005) Abundance of interstitial eosinophils in renal allografts is associated with vascular rejection. Transplantation 79:444–450

    Article  PubMed  Google Scholar 

  12. Trull AK, Akhlaghi F, Charman SC et al (2004) Immunosuppression, eotaxin and the diagnostic changes in eosinophils that precede early acute heart allograft rejection. Transpl Immunol 12:159–166

    Article  CAS  PubMed  Google Scholar 

  13. Hamann KJ, Barker RL, Ten RM, Gleich GJ (1991) The molecular biology of eosinophil granule proteins. Int Arch Allergy Appl Immunol 94:202–209

    Article  CAS  PubMed  Google Scholar 

  14. Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ (1989) Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142:4428–4434

    CAS  PubMed  Google Scholar 

  15. Gleich GJ, Loegering DA, Bell MP, Checkel JL, Ackerman SJ, McKean DJ (1986) Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A 83:3146–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Young JD, Peterson CG, Venge P, Cohn ZA (1986) Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 321:613–616

    Article  CAS  PubMed  Google Scholar 

  17. Venge P, Bystrom J, Carlson M et al (1999) Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy 29:1172–1186

    Article  CAS  PubMed  Google Scholar 

  18. O’Donnell MC, Ackerman SJ, Gleich GJ, Thomas LL (1983) Activation of basophil and mast cell histamine release by eosinophil granule major basic protein. J Exp Med 157:1981–1991

    Article  PubMed  Google Scholar 

  19. Wasmoen TL, Bell MP, Loegering DA, Gleich GJ, Prendergast FG, McKean DJ (1988) Biochemical and amino acid sequence analysis of human eosinophil granule major basic protein. J Biol Chem 263:12559–12563

    CAS  PubMed  Google Scholar 

  20. Agosti JM, Altman LC, Ayars GH, Loegering DA, Gleich GJ, Klebanoff SJ (1987) The injurious effect of eosinophil peroxidase, hydrogen peroxide, and halides on pneumocytes in vitro. J Allergy Clin Immunol 79:496–504

    Article  CAS  PubMed  Google Scholar 

  21. MacPherson JC, Comhair SA, Erzurum SC et al (2001) Eosinophils are a major source of nitric oxide-derived oxidants in severe asthma: characterization of pathways available to eosinophils for generating reactive nitrogen species. J Immunol 166:5763–5772

    Article  CAS  PubMed  Google Scholar 

  22. Wu W, Chen Y, Hazen SL (1999) Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders. J Biol Chem 274:25933–25944

    Article  CAS  PubMed  Google Scholar 

  23. Lacy P, Stow JL (2011) Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood 118:9–18

    Article  CAS  PubMed  Google Scholar 

  24. Spencer LA, Melo RC, Perez SA, Bafford SP, Dvorak AM, Weller PF (2006) Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc Natl Acad Sci U S A 103:3333–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13:9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shamri R, Xenakis JJ, Spencer LA (2011) Eosinophils in innate immunity: an evolving story. Cell Tissue Res 343:57–83

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sriramarao P, von Andrian UH, Butcher EC, Bourdon MA, Broide DH (1994) L-selectin and very late antigen-4 integrin promote eosinophil rolling at physiological shear rates in vivo. J Immunol 153:4238–4246

    CAS  PubMed  Google Scholar 

  28. Berg EL, McEvoy LM, Berlin C, Bargatze RF, Butcher EC (1993) L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature 366:695–698

    Article  CAS  PubMed  Google Scholar 

  29. Symon FA, Lawrence MB, Williamson ML, Walsh GM, Watson SR, Wardlaw AJ (1996) Functional and structural characterization of the eosinophil P-selectin ligand. J Immunol 157:1711–1719

    CAS  PubMed  Google Scholar 

  30. Forbes E, Hulett M, Ahrens R et al (2006) ICAM-1-dependent pathways regulate colonic eosinophilic inflammation. J Leukoc Biol 80:330–341

    Article  CAS  PubMed  Google Scholar 

  31. Bochner BS, Schleimer RP (2001) Mast cells, basophils, and eosinophils: distinct but overlapping pathways for recruitment. Immunol Rev 179:5–15

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Rudd CE (2008) SKAP-55, SKAP-55-related and ADAP adaptors modulate integrin-mediated immune-cell adhesion. Trends Cell Biol 18:486–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mishra A, Hogan SP, Brandt EB et al (2002) Enterocyte expression of the eotaxin and interleukin-5 transgenes induces compartmentalized dysregulation of eosinophil trafficking. J Biol Chem 277:4406–4412

    Article  CAS  PubMed  Google Scholar 

  34. Artis D, Humphreys NE, Potten CS et al (2000) Beta7 integrin-deficient mice: delayed leukocyte recruitment and attenuated protective immunity in the small intestine during enteric helminth infection. Eur J Immunol 30:1656–1664

    Article  CAS  PubMed  Google Scholar 

  35. Nakajima H, Sano H, Nishimura T, Yoshida S, Iwamoto I (1994) Role of vascular cell adhesion molecule 1/very late activation antigen 4 and intercellular adhesion molecule 1/lymphocyte function-associated antigen 1 interactions in antigen-induced eosinophil and T cell recruitment into the tissue. J Exp Med 179:1145–1154

    Article  CAS  PubMed  Google Scholar 

  36. Pretolani M, Ruffie C, Lapa e Silva JR, Joseph D, Lobb RR, Vargaftig BB (1994) Antibody to very late activation antigen 4 prevents antigen-induced bronchial hyperreactivity and cellular infiltration in the guinea pig airways. J Exp Med 180:795–805

    Article  CAS  PubMed  Google Scholar 

  37. Okigami H, Takeshita K, Tajimi M et al (2007) Inhibition of eosinophilia in vivo by a small molecule inhibitor of very late antigen (VLA)-4. Eur J Pharmacol 559:202–209

    Article  CAS  PubMed  Google Scholar 

  38. Wang H, Tan X, Chang H, Huang W, Gonzalez-Crussi F, Hsueh W (1999) Platelet-activating factor receptor mRNA is localized in eosinophils and epithelial cells in rat small intestine: regulation by dexamethasone and gut flora. Immunology 97:447–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fujii M, Tanaka H, Abe S (2005) Interferon-gamma up-regulates expression of cysteinyl leukotriene type 2 receptors on eosinophils in asthmatic patients. Chest 128:3148–3155

    Article  CAS  PubMed  Google Scholar 

  40. Zinchuk O, Fukushima A, Zinchuk V, Fukata K, Ueno H (2005) Direct action of platelet activating factor (PAF) induces eosinophil accumulation and enhances expression of PAF receptors in conjunctivitis. Mol Vis 11:114–123

    CAS  PubMed  Google Scholar 

  41. Thivierge M, Doty M, Johnson J, Stankova J, Rola-Pleszczynski M (2000) IL-5 up-regulates cysteinyl leukotriene 1 receptor expression in HL-60 cells differentiated into eosinophils. J Immunol 165:5221–5226

    Article  CAS  PubMed  Google Scholar 

  42. Hirai H, Tanaka K, Yoshie O et al (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 193:255–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sugimoto H, Shichijo M, Iino T et al (2003) An orally bioavailable small molecule antagonist of CRTH2, ramatroban (BAY u3405), inhibits prostaglandin D2-induced eosinophil migration in vitro. J Pharmacol Exp Ther 305:347–352

    Article  CAS  PubMed  Google Scholar 

  44. Barnes N, Pavord I, Chuchalin A et al (2012) A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin Exp Allergy 42:38–48

    Article  CAS  PubMed  Google Scholar 

  45. Elsner J, Dulkys Y, Gupta S et al (2005) Differential pattern of CCR1 internalization in human eosinophils: prolonged internalization by CCL5 in contrast to CCL3. Allergy 60:1386–1393

    Article  CAS  PubMed  Google Scholar 

  46. Phillips RM, Stubbs VE, Henson MR, Williams TJ, Pease JE, Sabroe I (2003) Variations in eosinophil chemokine responses: an investigation of CCR1 and CCR3 function, expression in atopy, and identification of a functional CCR1 promoter. J Immunol 170:6190–6201

    Article  CAS  PubMed  Google Scholar 

  47. Gong L, Wilhelm RS (2009) CCR3 antagonists: a survey of the patent literature. Expert Opin Ther Pat 19:1109–1132

    Article  CAS  PubMed  Google Scholar 

  48. Sullivan SK, McGrath DA, Liao F, Boehme SA, Farber JM, Bacon KB (1999) MIP-3alpha induces human eosinophil migration and activation of the mitogen-activated protein kinases (p42/p44 MAPK). J Leukoc Biol 66:674–682

    CAS  PubMed  Google Scholar 

  49. Nagase H, Miyamasu M, Yamaguchi M et al (2000) Glucocorticoids preferentially upregulate functional CXCR4 expression in eosinophils. J Allergy Clin Immunol 106:1132–1139

    Article  CAS  PubMed  Google Scholar 

  50. Oliveira SH, Lira S, Martinez AC, Wiekowski M, Sullivan L, Lukacs NW (2002) Increased responsiveness of murine eosinophils to MIP-1beta (CCL4) and TCA-3 (CCL1) is mediated by their specific receptors, CCR5 and CCR8. J Leukoc Biol 71:1019–1025

    CAS  PubMed  Google Scholar 

  51. Rothenberg ME, Pomerantz JL, Owen WF Jr et al (1988) Characterization of a human eosinophil proteoglycan, and augmentation of its biosynthesis and size by interleukin 3, interleukin 5, and granulocyte/macrophage colony stimulating factor. J Biol Chem 263:13901–13908

    CAS  PubMed  Google Scholar 

  52. Wechsler ME, Fulkerson PC, Bochner BS et al (2012) Novel targeted therapies for eosinophilic disorders. J Allergy Clin Immunol 130:563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zeck-Kapp G, Czech W, Kapp A (1994) TNF alpha-induced activation of eosinophil oxidative metabolism and morphology—comparison with IL-5. Exp Dermatol 3:176–188

    Article  CAS  PubMed  Google Scholar 

  54. Kvarnhammar AM, Cardell LO (2012) Pattern-recognition receptors in human eosinophils. Immunology 136:11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong CK, Cheung PF, Ip WK, Lam CW (2007) Intracellular signaling mechanisms regulating toll-like receptor-mediated activation of eosinophils. Am J Respir Cell Mol Biol 37:85–96

    Article  CAS  PubMed  Google Scholar 

  56. Nagase H, Okugawa S, Ota Y et al (2003) Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J Immunol 171:3977–3982

    Article  CAS  PubMed  Google Scholar 

  57. Walsh GM, Hartnell A, Moqbel R et al (1990) Receptor expression and functional status of cultured human eosinophils derived from umbilical cord blood mononuclear cells. Blood 76:105–111

    CAS  PubMed  Google Scholar 

  58. Giembycz MA, Lindsay MA (1999) Pharmacology of the eosinophil. Pharmacol Rev 51:213–340

    CAS  PubMed  Google Scholar 

  59. Koenderman L, Kuijpers TW, Blom M, Tool AT, Roos D, Verhoeven AJ (1991) Characteristics of CR3-mediated aggregation in human eosinophils: effect of priming by platelet-activating factor. J Allergy Clin Immunol 87:947–954

    Article  CAS  PubMed  Google Scholar 

  60. Kita H, Gleich GJ (1997) Eosinophils and IgE receptors: a continuing controversy. Blood 89:3497–3501

    CAS  PubMed  Google Scholar 

  61. Seminario MC, Saini SS, MacGlashan DW Jr, Bochner BS (1999) Intracellular expression and release of Fc epsilon RI alpha by human eosinophils. J Immunol 162:6893–6900

    CAS  PubMed  Google Scholar 

  62. Kita H, Kaneko M, Bartemes KR et al (1999) Does IgE bind to and activate eosinophils from patients with allergy? J Immunol 162:6901–6911

    CAS  PubMed  Google Scholar 

  63. Ying S, Barata LT, Meng Q et al (1998) High-affinity immunoglobulin E receptor (Fc epsilon RI)-bearing eosinophils, mast cells, macrophages and Langerhans’ cells in allergen-induced late-phase cutaneous reactions in atopic subjects. Immunology 93:281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lucey DR, Nicholson-Weller A, Weller PF (1989) Mature human eosinophils have the capacity to express HLA-DR. Proc Natl Acad Sci U S A 86:1348–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mawhorter SD, Kazura JW, Boom WH (1994) Human eosinophils as antigen-presenting cells: relative efficiency for superantigen- and antigen-induced CD4+ T-cell proliferation. Immunology 81:584–591

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Celestin J, Rotschke O, Falk K et al (2001) IL-3 induces B7.2 (CD86) expression and costimulatory activity in human eosinophils. J Immunol 167:6097–6104

    Article  CAS  PubMed  Google Scholar 

  67. Shi HZ, Humbles A, Gerard C, Jin Z, Weller PF (2000) Lymph node trafficking and antigen presentation by endobronchial eosinophils. J Clin Invest 105:945–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Duez C, Dakhama A, Tomkinson A et al (2004) Migration and accumulation of eosinophils toward regional lymph nodes after airway allergen challenge. J Allergy Clin Immunol 114:820–825

    Article  CAS  PubMed  Google Scholar 

  69. Tamura N, Ishii N, Nakazawa M et al (1996) Requirement of CD80 and CD86 molecules for antigen presentation by eosinophils. Scand J Immunol 44:229–238

    Article  CAS  PubMed  Google Scholar 

  70. Wang HB, Ghiran I, Matthaei K, Weller PF (2007) Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. J Immunol 179:7585–7592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. MacKenzie JR, Mattes J, Dent LA, Foster PS (2001) Eosinophils promote allergic disease of the lung by regulating CD4(+) Th2 lymphocyte function. J Immunol 167:3146–3155

    Article  CAS  PubMed  Google Scholar 

  72. Padigel UM, Hess JA, Lee JJ et al (2007) Eosinophils act as antigen-presenting cells to induce immunity to Strongyloides stercoralis in mice. J Infect Dis 196:1844–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van Rijt LS, Vos N, Hijdra D, de Vries VC, Hoogsteden HC, Lambrecht BN (2003) Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells. J Immunol 171:3372–3378

    Article  PubMed  Google Scholar 

  74. Zheutlin LM, Ackerman SJ, Gleich GJ, Thomas LL (1984) Stimulation of basophil and rat mast cell histamine release by eosinophil granule-derived cationic proteins. J Immunol 133:2180–2185

    CAS  PubMed  Google Scholar 

  75. Piliponsky AM, Gleich GJ, Bar I, Levi-Schaffer F (2002) Effects of eosinophils on mast cells: a new pathway for the perpetuation of allergic inflammation. Mol Immunol 38:1369

    Article  CAS  PubMed  Google Scholar 

  76. Wong CK, Ng SS, Lun SW, Cao J, Lam CW (2009) Signalling mechanisms regulating the activation of human eosinophils by mast-cell-derived chymase: implications for mast cell-eosinophil interaction in allergic inflammation. Immunology 126:579–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matsuba-Kitamura S, Yoshimoto T, Yasuda K et al (2010) Contribution of IL-33 to induction and augmentation of experimental allergic conjunctivitis. Int Immunol 22:479–489

    Article  CAS  PubMed  Google Scholar 

  78. Solomon A, Aloe L, Pe’er J et al (1998) Nerve growth factor is preformed in and activates human peripheral blood eosinophils. J Allergy Clin Immunol 102:454–460

    Article  CAS  PubMed  Google Scholar 

  79. Bullock ED, Johnson EM Jr (1996) Nerve growth factor induces the expression of certain cytokine genes and bcl-2 in mast cells. Potential role in survival promotion. J Biol Chem 271:27500–27508

    Article  CAS  PubMed  Google Scholar 

  80. Horigome K, Bullock ED, Johnson EM Jr (1994) Effects of nerve growth factor on rat peritoneal mast cells. Survival promotion and immediate-early gene induction. J Biol Chem 269:2695–2702

    CAS  PubMed  Google Scholar 

  81. Throsby M, Herbelin A, Pleau JM, Dardenne M (2000) CD11c + eosinophils in the murine thymus: developmental regulation and recruitment upon MHC class I-restricted thymocyte deletion. J Immunol 165:1965–1975

    Article  CAS  PubMed  Google Scholar 

  82. Tulic MK, Sly PD, Andrews D et al (2009) Thymic indoleamine 2,3-dioxygenase-positive eosinophils in young children: potential role in maturation of the naive immune system. Am J Pathol 175:2043–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Matthews AN, Friend DS, Zimmermann N et al (1998) Eotaxin is required for the baseline level of tissue eosinophils. Proc Natl Acad Sci U S A 95:6273–6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fulkerson PC, Fischetti CA, McBride ML, Hassman LM, Hogan SP, Rothenberg ME (2006) A central regulatory role for eosinophils and the eotaxin/CCR3 axis in chronic experimental allergic airway inflammation. Proc Natl Acad Sci U S A 103:16418–16423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim HJ, Alonzo ES, Dorothee G, Pollard JW, Sant’Angelo DB (2010) Selective depletion of eosinophils or neutrophils in mice impacts the efficiency of apoptotic cell clearance in the thymus. PLoS One 5, e11439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Sferruzzi-Perri AN, Robertson SA, Dent LA (2003) Interleukin-5 transgene expression and eosinophilia are associated with retarded mammary gland development in mice. Biol Reprod 69:224–233

    Article  CAS  PubMed  Google Scholar 

  87. Robertson SA, Mau VJ, Young IG, Matthaei KI (2000) Uterine eosinophils and reproductive performance in interleukin 5-deficient mice. J Reprod Fertil 120:423–432

    CAS  PubMed  Google Scholar 

  88. Zhang J, Lathbury LJ, Salamonsen LA (2000) Expression of the chemokine eotaxin and its receptor, CCR3, in human endometrium. Biol Reprod 62:404–411

    Article  CAS  PubMed  Google Scholar 

  89. Gouon-Evans V, Pollard JW (2001) Eotaxin is required for eosinophil homing into the stroma of the pubertal and cycling uterus. Endocrinology 142:4515–4521

    Article  CAS  PubMed  Google Scholar 

  90. Gouon-Evans V, Lin EY, Pollard JW (2002) Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res 4:155–164

    Article  PubMed  PubMed Central  Google Scholar 

  91. Knudsen UB, Uldbjerg N, Rechberger T, Fredens K (1997) Eosinophils in human cervical ripening. Eur J Obstet Gynecol Reprod Biol 72:165–168

    Article  CAS  PubMed  Google Scholar 

  92. Timmons BC, Fairhurst AM, Mahendroo MS (2009) Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J Immunol 182:2700–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Robertson SA, Mau VJ, Hudson SN, Tremellen KP (1997) Cytokine-leukocyte networks and the establishment of pregnancy. Am J Reprod Immunol 37:438–442

    Article  CAS  PubMed  Google Scholar 

  94. De M, Choudhuri R, Wood GW (1991) Determination of the number and distribution of macrophages, lymphocytes, and granulocytes in the mouse uterus from mating through implantation. J Leukoc Biol 50:252–262

    CAS  PubMed  Google Scholar 

  95. Maddox DE, Kephart GM, Coulam CB, Butterfield JH, Benirschke K, Gleich GJ (1984) Localization of a molecule immunochemically similar to eosinophil major basic protein in human placenta. J Exp Med 160:29–41

    Article  CAS  PubMed  Google Scholar 

  96. Wagner JM, Hustin J, Bonno M, Kephart GM, Gurian KV, Gleich GJ (1994) Pregnancy-associated major basic protein: deposition of protein and expression of mRNA at the maternal-fetal junction in early and late gestation. Placenta 15:625–640

    Article  CAS  PubMed  Google Scholar 

  97. Gouon-Evans V, Rothenberg ME, Pollard JW (2000) Postnatal mammary gland development requires macrophages and eosinophils. Development 127:2269–2282

    CAS  PubMed  Google Scholar 

  98. Colbert DC, McGarry MP, O’Neill K, Lee NA, Lee JJ (2005) Decreased size and survival of weanling mice in litters of IL-5-/ -mice are a consequence of the IL-5 deficiency in nursing dams. Contemp Top Lab Anim Sci 44:53–55

    CAS  PubMed  Google Scholar 

  99. Boyce JA, Friend D, Matsumoto R, Austen KF, Owen WF (1995) Differentiation in vitro of hybrid eosinophil/basophil granulocytes: autocrine function of an eosinophil developmental intermediate. J Exp Med 182:49–57

    Article  CAS  PubMed  Google Scholar 

  100. Nerlov C, Graf T (1998) PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 12:2403–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McNagny K, Graf T (2002) Making eosinophils through subtle shifts in transcription factor expression. J Exp Med 195:F43–F47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yu C, Cantor AB, Yang H et al (2002) Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 195:1387–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hirasawa R, Shimizu R, Takahashi S et al (2002) Essential and instructive roles of GATA factors in eosinophil development. J Exp Med 195:1379–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Iwasaki H, Mizuno S, Mayfield R et al (2005) Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J Exp Med 201:1891–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Du J, Stankiewicz MJ, Liu Y et al (2002) Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J Biol Chem 277:43481–43494

    Article  CAS  PubMed  Google Scholar 

  106. Zimmermann N, Daugherty BL, Kavanaugh JL, El-Awar FY, Moulton EA, Rothenberg ME (2000) Analysis of the CC chemokine receptor 3 gene reveals a complex 5′ exon organization, a functional role for untranslated exon 1, and a broadly active promoter with eosinophil-selective elements. Blood 96:2346–2354

    CAS  PubMed  Google Scholar 

  107. Nerlov C, McNagny KM, Doderlein G, Kowenz-Leutz E, Graf T (1998) Distinct C/EBP functions are required for eosinophil lineage commitment and maturation. Genes Dev 12:2413–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bedi R, Du J, Sharma AK, Gomes I, Ackerman SJ (2009) Human C/EBP-epsilon activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation. Blood 113:317–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. DeKoter RP, Singh H (2000) Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288:1439–1441

    Article  CAS  PubMed  Google Scholar 

  110. Walsh JC, DeKoter RP, Lee HJ et al (2002) Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 17:665–676

    Article  CAS  PubMed  Google Scholar 

  111. Vadas M, Lopez A, Gamble J et al (1994) Cytokines and allergy. J Allergy Clin Immunol 94:1289–1293

    Article  CAS  PubMed  Google Scholar 

  112. Sanderson CJ (1992) Interleukin-5, eosinophils, and disease. Blood 79:3101–3109

    CAS  PubMed  Google Scholar 

  113. Lee JJ, McGarry MP, Farmer SC et al (1997) Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med 185:2143–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Owen WF, Rothenberg ME, Petersen J et al (1989) Interleukin 5 and phenotypically altered eosinophils in the blood of patients with the idiopathic hypereosinophilic syndrome. J Exp Med 170:343–348

    Article  CAS  PubMed  Google Scholar 

  115. Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ (1995) Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med 182:1169–1174

    Article  CAS  PubMed  Google Scholar 

  116. Leckie MJ, ten Brinke A, Khan J et al (2000) Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356:2144–2148

    Article  CAS  PubMed  Google Scholar 

  117. Kips JC, O’Connor BJ, Langley SJ et al (2003) Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am J Respir Crit Care Med 167:1655–1659

    Article  PubMed  Google Scholar 

  118. Iikura M, Hojo M, Sugiyama H (2014) Glucocorticoids and mepolizumab in eosinophilic asthma. N Engl J Med 371:2433–2434

    Article  PubMed  Google Scholar 

  119. Walsh GM (2009) Mepolizumab and eosinophil-mediated disease. Curr Med Chem 16:4774–4778

    Article  CAS  PubMed  Google Scholar 

  120. Castro M, Wenzel SE, Bleecker ER et al (2014) Benralizumab, an anti-interleukin 5 receptor alpha monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir Med 2:879–890

    Article  CAS  PubMed  Google Scholar 

  121. Allakhverdi Z, Allam M, Guimond A et al (2006) Multitargeted approach using antisense oligonucleotides for the treatment of asthma. Ann N Y Acad Sci 1082:62–73

    Article  CAS  PubMed  Google Scholar 

  122. Wong CK, Lau KM, Chan IH et al (2013) MicroRNA-21* regulates the prosurvival effect of GM-CSF on human eosinophils. Immunobiology 218:255–262

    Article  CAS  PubMed  Google Scholar 

  123. Lu TX, Lim EJ, Besse JA et al (2013) MiR-223 deficiency increases eosinophil progenitor proliferation. J Immunol 190:1576–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hackanson B, Bennett KL, Brena RM et al (2008) Epigenetic modification of CCAAT/enhancer binding protein alpha expression in acute myeloid leukemia. Cancer Res 68:3142–3151

    Article  CAS  PubMed  Google Scholar 

  125. Perrotti D, Cesi V, Trotta R et al (2002) BCR-ABL suppresses C/EBPalpha expression through inhibitory action of hnRNP E2. Nat Genet 30:48–58

    Article  CAS  PubMed  Google Scholar 

  126. Eiring AM, Harb JG, Neviani P et al (2010) miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140:652–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Radomska HS, Basseres DS, Zheng R et al (2006) Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 203:371–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu CJ, Yang CY, Chen YH, Chen CM, Chen LC, Kuo ML (2013) The DNA methylation inhibitor 5-azacytidine increases regulatory T cells and alleviates airway inflammation in ovalbumin-sensitized mice. Int Arch Allergy Immunol 160:356–364

    Article  CAS  PubMed  Google Scholar 

  129. Sun Q, Yang X, Zhong B et al (2012) Upregulated protein arginine methyltransferase 1 by IL-4 increases eotaxin-1 expression in airway epithelial cells and participates in antigen-induced pulmonary inflammation in rats. J Immunol 188:3506–3512

    Article  CAS  PubMed  Google Scholar 

  130. Nishioka C, Ikezoe T, Yang J, Yokoyama A (2010) Long-term exposure of leukemia cells to multi-targeted tyrosine kinase inhibitor induces activations of AKT, ERK and STAT5 signaling via epigenetic silencing of the PTEN gene. Leukemia 24:1631–1640

    Article  CAS  PubMed  Google Scholar 

  131. Gotlib J (2014) World Health Organization-defined eosinophilic disorders: 2014 update on diagnosis, risk stratification, and management. Am J Hematol 89:325–337

    Article  CAS  PubMed  Google Scholar 

  132. Long H, Zhang G, Wang L, Lu Q (2015) Eosinophilic skin diseases: a comprehensive review. Clin Rev Allergy Immunol 1–25. doi:10.1007/s12016-015-8485-8

  133. Hardy WR, Anderson RE (1968) The hypereosinophilic syndromes. Ann Intern Med 68:1220–1229

    Article  CAS  PubMed  Google Scholar 

  134. Simon HU, Rothenberg ME, Bochner BS et al (2010) Refining the definition of hypereosinophilic syndrome. J Allergy Clin Immunol 126:45–49

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cogan E, Roufosse F (2012) Clinical management of the hypereosinophilic syndromes. Expert Rev Hematol 5:275–289

    Article  CAS  PubMed  Google Scholar 

  136. Chusid MJ, Dale DC, West BC, Wolff SM (1975) The hypereosinophilic syndrome: analysis of fourteen cases with review of the literature. Medicine (Baltimore) 54:1–27

    Article  CAS  Google Scholar 

  137. Klion AD, Bochner BS, Gleich GJ et al (2006) Approaches to the treatment of hypereosinophilic syndromes: a workshop summary report. J Allergy Clin Immunol 117:1292–1302

    Article  PubMed  Google Scholar 

  138. Valent P, Klion AD, Horny HP et al (2012) Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol 130:607–612

    Article  PubMed  PubMed Central  Google Scholar 

  139. Roufosse F, Goldman M, Cogan E (2006) Hypereosinophilic syndrome: lymphoproliferative and myeloproliferative variants. Semin Respir Crit Care Med 27:158–170

    Article  PubMed  Google Scholar 

  140. Klion AD (2005) Recent advances in the diagnosis and treatment of hypereosinophilic syndromes. Hematol Am Soc Hematol Educ Prog 1:209–214

  141. Gleich GJ, Leiferman KM, Pardanani A, Tefferi A, Butterfield JH (2002) Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet 359:1577–1578

    Article  CAS  PubMed  Google Scholar 

  142. Cools J, DeAngelo DJ, Gotlib J et al (2003) A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348:1201–1214

    Article  CAS  PubMed  Google Scholar 

  143. Stone RM, Gilliland DG, Klion AD (2004) Platelet-derived growth factor receptor inhibition to treat idiopathic hypereosinophilic syndrome. Semin Oncol 31:12–17

    Article  CAS  PubMed  Google Scholar 

  144. Pardanani A, Ketterling RP, Li CY et al (2006) FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res 30:965–970

    Article  CAS  PubMed  Google Scholar 

  145. Ogbogu PU, Bochner BS, Butterfield JH et al (2009) Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol 124:1319–1325, e1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Curtis CE, Grand FH, Musto P et al (2007) Two novel imatinib-responsive PDGFRA fusion genes in chronic eosinophilic leukaemia. Br J Haematol 138:77–81

    Article  CAS  PubMed  Google Scholar 

  147. Bain BJ (2004) Relationship between idiopathic hypereosinophilic syndrome, eosinophilic leukemia, and systemic mastocytosis. Am J Hematol 77:82–85

    Article  PubMed  Google Scholar 

  148. Roufosse F, Cogan E, Goldman M (2007) Lymphocytic variant hypereosinophilic syndromes. Immunol Allergy Clin North Am 27:389–413

    Article  PubMed  Google Scholar 

  149. Kahn JE, Bletry O, Guillevin L (2008) Hypereosinophilic syndromes. Best Pract Res Clin Rheumatol 22:863–882

    Article  CAS  PubMed  Google Scholar 

  150. Brugnoni D, Airo P, Rossi G et al (1996) A case of hypereosinophilic syndrome is associated with the expansion of a CD3-CD4+ T-cell population able to secrete large amounts of interleukin-5. Blood 87:1416–1422

    CAS  PubMed  Google Scholar 

  151. Cogan E, Schandene L, Crusiaux A, Cochaux P, Velu T, Goldman M (1994) Brief report: clonal proliferation of type 2 helper T cells in a man with the hypereosinophilic syndrome. N Engl J Med 330:535–538

    Article  CAS  PubMed  Google Scholar 

  152. Lopez AF, Sanderson CJ, Gamble JR, Campbell HD, Young IG, Vadas MA (1988) Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med 167:219–224

    Article  CAS  PubMed  Google Scholar 

  153. Corren J (2012) Inhibition of interleukin-5 for the treatment of eosinophilic diseases. Discov Med 13:305–312

    PubMed  Google Scholar 

  154. Simon HU, Plotz SG, Dummer R, Blaser K (1999) Abnormal clones of T cells producing interleukin-5 in idiopathic eosinophilia. N Engl J Med 341:1112–1120

    Article  CAS  PubMed  Google Scholar 

  155. Vassina EM, Yousefi S, Simon D, Zwicky C, Conus S, Simon HU (2006) cIAP-2 and survivin contribute to cytokine-mediated delayed eosinophil apoptosis. Eur J Immunol 36:1975–1984

    Article  CAS  PubMed  Google Scholar 

  156. Klion A (2009) Hypereosinophilic syndrome: current approach to diagnosis and treatment. Annu Rev Med 60:293–306

    Article  CAS  PubMed  Google Scholar 

  157. Rioux JD, Stone VA, Daly MJ et al (1998) Familial eosinophilia maps to the cytokine gene cluster on human chromosomal region 5q31-q33. Am J Hum Genet 63:1086–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Klion AD, Law MA, Riemenschneider W et al (2004) Familial eosinophilia: a benign disorder? Blood 103:4050–4055

    Article  CAS  PubMed  Google Scholar 

  159. Sriaroon P, Ballow M (2014) Biological modulators in eosinophilic diseases. Clin Rev Allergy Immunol 1–21. doi:10.1007/s12016-014-8444-9

  160. Kopf M, Brombacher F, Hodgkin PD et al (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24

    Article  CAS  PubMed  Google Scholar 

  161. Yoshida T, Ikuta K, Sugaya H et al (1996) Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R alpha-deficient mice. Immunity 4:483–494

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81220108017, No. 81430074, No. 81301357, and No. 81270024), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20120162130003), the Natural Science Foundation of Hunan Province of China (13JJ4025), and the National Key Clinical Speciality Construction Project of National Health and Family Planning Commission of the People’s Republic of China.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher Chia-Chi Chang or Qianjin Lu.

Additional information

Wei Liao and Hai Long contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, W., Long, H., Chang, C.CC. et al. The Eosinophil in Health and Disease: from Bench to Bedside and Back. Clinic Rev Allerg Immunol 50, 125–139 (2016). https://doi.org/10.1007/s12016-015-8507-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-015-8507-6

Keywords

Navigation