Skip to main content

Advertisement

Log in

Pineal Gland Hormone Melatonin Inhibits Migration of Hematopoietic Stem/Progenitor Cells (HSPCs) by Downregulating Nlrp3 Inflammasome and Upregulating Heme Oxygenase-1 (HO-1) Activity

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Hematopoietic stem progenitor cells (HSPCs) follow the diurnal circulation rhythm in peripheral blood (PB) with nadir during late night and peak at early morning hours. The level of these cells in PB correlates with activation of innate immunity pathways, including complement cascade (ComC) that drives activation of Nlrp3 inflammasome. To support this, mice both in defective ComC activation as well as Nlrp3 inflammasome do not show typical changes in the diurnal level of circulating HSPCs. Migration of HSPCs is also impaired at the intracellular level by the anti-inflammatory enzyme heme oxygenase-1 (HO-1) which is an inhibitor of Nlrp3 inflammasome. It is also well known that circadian rhythm mediates PB level of melatonin released from the pineal gland. Since trafficking of HSPCs is driven by innate immunity-induced sterile inflammation and melatonin has an anti-inflammatory effect, we hypothesized that melatonin could negatively impact the release of HSPCs from BM into PB by inhibiting Nlrp3 inflammasome activation. We provide an evidence that melatonin being a ‘’sleep regulating pineal hormone’’ directly inhibits migration of HSPCs both in vitro migration assays and in vivo during pharmacological mobilization. This correlated with inhibition of cholesterol synthesis required for a proper membrane lipid raft (MLRs) formation and an increase in expression of HO-1—an inhibitor of Nlrp3 inflammasome. Since melatonin is a commonly used drug, this should be considered while preparing a patient for the procedure of HSPCs mobilization. More importantly, our studies shed more mechanistic light on a role of melatonin in the diurnal circulation of HSPCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Detailed data are available upon reasonable request.

References

  1. Ratajczak, M. Z., Adamiak, M., Plonka, M., et al. (2018). Mobilization of hematopoietic stem cells as a result of innate immunity-mediated sterile inflammation in the bone marrow microenvironment-the involvement of extracellular nucleotides and purinergic signaling. Leukemia, 32, 1116–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bujko, K., Cymer, M., Adamiak, M., et al. (2019). An overview of novel unconventional mechanisms of hematopoietic development and regulators of hematopoiesis - a roadmap for future investigations. Stem Cell Reviews and Reports, 15, 785–794.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Adamiak, M., Ciechanowicz, A., Chumak, V., et al. (2022). Novel evidence that alternative pathway of complement cascade activation is required for optimal homing and engraftment of hematopoietic stem/progenitor cells. Stem Cell Reviews and Reports, 18, 1355–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adamiak, M., Moore, JBt., Zhao, J., et al. (2016). Downregulation of heme oxygenase 1 (HO-1) activity in hematopoietic cells enhances their engraftment after transplantation. Cell Transplantation, 25, 1265–1276.

    Article  PubMed  Google Scholar 

  5. Ratajczak, M. Z., Adamiak, M., Ratajczak, J., et al. (2021). Heme oxygenase 1 (HO-1) as an inhibitor of trafficking of normal and malignant hematopoietic stem cells - clinical and translational implications. Stem Cell Reviews and Reports, 17, 821–828.

    Article  CAS  PubMed  Google Scholar 

  6. Vasey, C., McBride, J., & Penta, K. (2021). Circadian rhythm dysregulation and restoration: The role of melatonin. Nutrients, 13, 3480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adamiak, M., Ciechanowicz, A., Skoda, M., et al. (2020). Novel evidence that purinergic signaling - Nlrp3 inflammasome axis regulates circadian rhythm of hematopoietic stem/progenitor cells circulation in peripheral blood. Stem Cell Reviews and Reports, 16, 335–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Golan, K., Kollet, O., Markus, R. P., et al. (2019). Daily light and darkness onset and circadian rhythms metabolically synchronize hematopoietic stem cell differentiation and maintenance: The role of bone marrow norepinephrine, tumor necrosis factor, and melatonin cycles. Experimental Hematology, 78, 1–10.

    Article  CAS  PubMed  Google Scholar 

  9. Golan, K., Kumari, A., Kollet, O., et al. (2018). Daily onset of light and darkness differentially controls hematopoietic stem cell differentiation and maintenance. Cell Stem Cell, 23, 572–585.

    Article  CAS  PubMed  Google Scholar 

  10. Cho, J. H., Bhutani, S., Kim, C. H., et al. (2021). Anti-inflammatory effects of melatonin: A systematic review and meta-analysis of clinical trials. Brain, Behavior, and Immunity, 93, 245–253.

    Article  CAS  PubMed  Google Scholar 

  11. Abdelbaset-Ismail, A., Ciechanowicz, A. K., Bujko, K., et al. (2023). The Nox2-ROS-Nlrp3 inflammasome signaling stimulates in the hematopoietic stem/progenitor cells lipogenesis to facilitate membrane lipid raft formation. Stem Cell Reviews and Reports, 19, 92–103.

    Article  CAS  PubMed  Google Scholar 

  12. Ratajczak, M. Z., Bujko, K., Ciechanowicz, A., et al. (2021). SARS-CoV-2 entry receptor ACE2 is expressed on very small CD45(-) precursors of hematopoietic and endothelial cells and in response to virus spike protein activates the Nlrp3 inflammasome. Stem Cell Reviews and Reports, 17, 266–277.

    Article  CAS  PubMed  Google Scholar 

  13. Adamiak, M., Abdelbaset-Ismail, A., Kucia, M., et al. (2016). Toll-like receptor signaling-deficient mice are easy mobilizers: Evidence that TLR signaling prevents mobilization of hematopoietic stem/progenitor cells in HO-1-dependent manner. Leukemia, 30, 2416–2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thapa, A., Adamiak, M., Bujko, K., et al. (2021). Danger-associated molecular pattern molecules take unexpectedly a central stage in Nlrp3 inflammasome-caspase-1-mediated trafficking of hematopoietic stem/progenitor cells. Leukemia, 35, 2658–2671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adamiak, M., Bujko, K., Brzezniakiewicz-Janus, K., et al. (2019). The inhibition of CD39 and CD73 cell surface ectonucleotidases by small molecular inhibitors enhances the mobilization of bone marrow residing stem cells by decreasing the extracellular level of adenosine. Stem Cell Reviews and Reports, 15, 892–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thapa, A., Abdelbaset-Ismail, A., Chumak, V., et al. (2022). Extracellular adenosine (eAdo) - A(2B) receptor axis inhibits in Nlrp3 inflammasome-dependent manner trafficking of hematopoietic stem/progenitor cells. Stem Cell Reviews and Reports, 18, 2893–2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ren, D. L., Sun, A. A., Li, Y. J., et al. (2015). Exogenous melatonin inhibits neutrophil migration through suppression of ERK activation. Journal of Endocrinology, 227, 49–60.

    Article  CAS  PubMed  Google Scholar 

  18. Alvarez-Sanchez, N., Cruz-Chamorro, I., Lopez-Gonzalez, A., et al. (2015). Melatonin controls experimental autoimmune encephalomyelitis by altering the T effector/regulatory balance. Brain, Behavior, and Immunity, 50, 101–114.

    Article  CAS  PubMed  Google Scholar 

  19. Wysoczynski, M., Reca, R., Ratajczak, J., et al. (2005). Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood, 105, 40–48.

    Article  CAS  PubMed  Google Scholar 

  20. Horejsi, V., & Hrdinka, M. (2014). Membrane microdomains in immunoreceptor signaling. FEBS Letters, 588, 2392–2397.

    Article  CAS  PubMed  Google Scholar 

  21. Ratajczak, M. Z. (2023). Cell surface membrane lipid rafts as potent regulators of stem cell proliferation, differentiation, trafficking and metabolism. Stem Cell Reviews and Reports, 19, 1.

    Article  CAS  PubMed  Google Scholar 

  22. Ratajczak, M. Z., & Kucia, M. (2021). The Nlrp3 inflammasome - the evolving story of its positive and negative effects on hematopoiesis. Current Opinion in Hematology, 28, 251–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brown, S. A. (2014). Circadian clock-mediated control of stem cell division and differentiation: Beyond night and day. Development, 141, 3105–3111.

    Article  CAS  PubMed  Google Scholar 

  24. Borkowska, S., Suszynska, M., Ratajczak, J., et al. (2016). Evidence of a pivotal role for the distal part of the complement cascade in the diurnal release of hematopoietic stem cells into peripheral blood. Cell Transplantation, 25, 275–282.

    Article  PubMed  Google Scholar 

  25. Chen, S. J., Huang, S. H., Chen, J. W., et al. (2016). Melatonin enhances interleukin-10 expression and suppresses chemotaxis to inhibit inflammation in situ and reduce the severity of experimental autoimmune encephalomyelitis. International Immunopharmacology, 31, 169–177.

    Article  CAS  PubMed  Google Scholar 

  26. Bubenik, G. A., & Konturek, S. J. (2011). Melatonin and aging: Prospects for human treatment. Journal of Physiology and Pharmacology, 62, 13–19.

    CAS  PubMed  Google Scholar 

  27. Lissoni, P., Tancini, G., Barni, S., et al. (1996). The pineal hormone melatonin in hematology and its potential efficacy in the treatment of thrombocytopenia. Recenti Progressi in Medicina, 87, 582–585.

    CAS  PubMed  Google Scholar 

  28. Cruciani, S., Garroni, G., Pala, R., et al. (2022). Melatonin finely tunes proliferation and senescence in hematopoietic stem cells. European Journal of Cell Biology, 101, 151251.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar, A., Choudhary, S., Kumar, S., et al. (2022). Role of melatonin mediated G-CSF induction in hematopoietic system of gamma-irradiated mice. Life Sciences, 289, 120190.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, L., Su, Y., & Choi, W. S. (2021). Melatonin suppresses oral squamous cell carcinomas migration and invasion through blocking FGF19/FGFR 4 signaling pathway. International Journal of Molecular Sciences, 22, 9907.

    Article  CAS  Google Scholar 

  31. Zhang, Y., He, F., Chen, Z., et al. (2019). Melatonin modulates IL-1beta-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation. Aging (Albany NY), 11, 10499–10512.

    Article  CAS  PubMed  Google Scholar 

  32. Kazeminia, N., Mehdizadeh, M., Salamzadeh, J., Parkhideh, S., Dastan, F., Mahboubi, A., & Tavakoli, A. M. (2021). The evaluation of melatonin effects on mobilization and engraftment in autologous hematopoietic stem cell transplant recipients; a randomized, double-blind and placebo-controlled trial. Iranian Journal of Pharmaceutical Research, 20, 117–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Adamiak, M., Bujko, K., Cymer, M., et al. (2018). Novel evidence that extracellular nucleotides and purinergic signaling induce innate immunity-mediated mobilization of hematopoietic stem/progenitor cells. Leukemia, 32, 1920–1931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lissoni, P., Mandala, M., Rossini, F., et al. (1999). Growth factors: thrombopoietic property of the pineal hormone melatonin. Hematology, 4, 335–343.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Science Centre, Poland OPUS grant UMO-2021/41/B/NZ3/01589 to MZR and National Science Centre, Poland OPUS grant UMO- 2022/45/B/NZ3/00476 to MK. AT was supported by NIH T32 HL134644 Training Grant to MZR.

This work was also supported by the Stella and Henry Hoenig Endowment to MZR.

Author information

Authors and Affiliations

Authors

Contributions

MZR, KBJ– conceived idea and designed experiments.

AA, JR. MK – performed experiments.

MZR wrote paper and all the authors provided comments and approved manuscript.

Corresponding author

Correspondence to Mariusz Z. Ratajczak.

Ethics declarations

Ethical Approval

This study was performed in accordance with the guidelines of the Animal Care and Use Committee of the University of Louisville School of Medicine and with the Guide for the Care and Use of Laboratory Animals (Department of Health and Human Services, Publication No. NIH 86–23).

Competing Interests

None identified.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelbaset-Ismail, A., Brzezniakiewicz-Janus, K., Thapa, A. et al. Pineal Gland Hormone Melatonin Inhibits Migration of Hematopoietic Stem/Progenitor Cells (HSPCs) by Downregulating Nlrp3 Inflammasome and Upregulating Heme Oxygenase-1 (HO-1) Activity. Stem Cell Rev and Rep 20, 237–246 (2024). https://doi.org/10.1007/s12015-023-10638-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10638-7

Keywords

Navigation