Skip to main content
Log in

Remodeled CD146+CD271+ Bone Marrow Mesenchymal Stem Cells from Patients with Polycythemia Vera Exhibit Altered Hematopoietic Supportive Activity

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

An essential component of the hematopoietic microenvironment, bone marrow mesenchymal stem cells (BM-MSCs) play an important role in the homeostasis and pathogenesis of the hematopoietic system by regulating the fate of hematopoietic stem cells (HSCs). Previous studies revealed that BM-MSCs were functionally remodeled by malignant cells in leukemia. However, the alterations in BM-MSCs in polycythemia vera (PV) and their effects on HSCs still need to be elucidated. Our results demonstrated that although BM-MSCs from PV patients shared similar surface markers with those from healthy donors, they exhibited enhanced proliferation, decreased senescence, and abnormal osteogenic differentiation capacities. The CD146+CD271+ BM-MSC subpopulation, which is considered to give rise to typical cultured BM-MSCs and form bone and the hematopoietic stroma, was then sorted. Compared with those from healthy donors, CD146+CD271+ BM-MSCs from PV patients showed an impaired mesensphere formation capacity and abnormal differentiation toward osteogenic lineages. In addition, CD146+CD271+ PV BM-MSCs showed altered hematopoietic supportive activity when cocultured with cord blood CD34+ cells. Our study suggested that remodeled CD146+CD271+ BM-MSCs might contribute to the pathogenesis of PV, a finding that will shed light on potential therapeutic strategies for PV.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The accession number for the RNA-seq data reported in this paper is NCBI Gene Expression Omnibus (GEO) GSE87806.

References

  1. Martinaud, C., Desterke, C., Konopacki, J., Pieri, L., Torossian, F., Golub, R., Schmutz, S., Anginot, A., Guerton, B., Rochet, N., Albanese, P., Henault, E., Pierre-Louis, O., Souraud, J. B., de Revel, T., Dupriez, B., Ianotto, J. C., Bourgeade, M. F., Vannucchi, A. M., … Le Bousse-Kerdiles, M. C. (2015). Osteogenic Potential of Mesenchymal Stromal Cells Contributes to Primary Myelofibrosis. Cancer Research, 75(22), 4753–4765. https://doi.org/10.1158/0008-5472.CAN-14-3696

    Article  CAS  Google Scholar 

  2. Spivak, J. L. (2018). Polycythemia Vera. Current Treatment Options in Oncology, 19(2), 12. https://doi.org/10.1007/s11864-018-0529-x

    Article  Google Scholar 

  3. Le, P. M., Andreeff, M., & Battula, V. L. (2018). Osteogenic niche in the regulation of normal hematopoiesis and leukemogenesis. Haematologica, 103(12), 1945–1955. https://doi.org/10.3324/haematol.2018.197004

    Article  CAS  Google Scholar 

  4. Schepers, K., Campbell, T. B., & Passegue, E. (2015). Normal and leukemic stem cell niches: Insights and therapeutic opportunities. Cell Stem Cell, 16(3), 254–267. https://doi.org/10.1016/j.stem.2015.02.014

    Article  CAS  Google Scholar 

  5. Chen, Q., Shou, P., Zheng, C., Jiang, M., Cao, G., Yang, Q., Cao, J., Xie, N., Velletri, T., Zhang, X., Xu, C., Zhang, L., Yang, H., Hou, J., Wang, Y., & Shi, Y. (2016). Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death and Differentiation, 23(7), 1128–1139. https://doi.org/10.1038/cdd.2015.168

    Article  CAS  Google Scholar 

  6. Zhou, H. S., Carter, B. Z., & Andreeff, M. (2016). Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang. Cancer Biology & Medicine, 13(2), 248–259. https://doi.org/10.20892/j.issn.2095-3941.2016.0023

    Article  CAS  Google Scholar 

  7. Schepers, K., Pietras, E. M., Reynaud, D., Flach, J., Binnewies, M., Garg, T., Wagers, A. J., Hsiao, E. C., & Passegue, E. (2013). Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell, 13(3), 285–299. https://doi.org/10.1016/j.stem.2013.06.009

    Article  CAS  Google Scholar 

  8. Sun, T., Ju, M., Dai, X., Dong, H., Gu, W., Gao, Y., Fu, R., Liu, X., Huang, Y., Liu, W., Ch, Y., Wang, W., Li, H., Zhou, Y., Shi, L., Yang, R., & Zhang, L. (2020). Multilevel defects in the hematopoietic niche in essential thrombocythemia. Haematologica, 105(3), 661–673. https://doi.org/10.3324/haematol.2018.213686

    Article  CAS  Google Scholar 

  9. Mead, A. J., & Mullally, A. (2017). Myeloproliferative neoplasm stem cells. Blood, 129(12), 1607–1616. https://doi.org/10.1182/blood-2016-10-696005

    Article  CAS  Google Scholar 

  10. Tormin, A., Li, O., Brune, J. C., Walsh, S., Schutz, B., Ehinger, M., Ditzel, N., Kassem, M., & Scheding, S. (2011). CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood, 117(19), 5067–5077. https://doi.org/10.1182/blood-2010-08-304287

    Article  CAS  Google Scholar 

  11. Shi, H., Wang, Y., Li, R., Xing, W., Yang, F. C., Bai, J., & Zhou, Y. (2018). Alteration in the Cytokine Secretion of Bone Marrow Stromal Cells from Patients with Chronic Myelomonocytic Leukemia Contribute to Impaired Hematopoietic Supportive Activity. Stem Cells Int, 2018, 5921392. https://doi.org/10.1155/2018/5921392

    Article  CAS  Google Scholar 

  12. Ramos, T. L., Sanchez-Abarca, L. I., Roson-Burgo, B., Redondo, A., Rico, A., Preciado, S., Ortega, R., Rodriguez, C., Muntion, S., Hernandez-Hernandez, A., De Las Rivas, J., Gonzalez, M., Gonzalez Porras, J. R., Del Canizo, C., & Sanchez-Guijo, F. (2017). Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis. PLoS ONE, 12(8), e0182470. https://doi.org/10.1371/journal.pone.0182470

    Article  Google Scholar 

  13. Li, R., Zhou, Y., Cao, Z., Liu, L., Wang, J., Chen, Z., Xing, W., Chen, S., Bai, J., Yuan, W., Cheng, T., Xu, M., Yang, F. C., & Zhao, Z. (2018). TET2 Loss Dysregulates the Behavior of Bone Marrow Mesenchymal Stromal Cells and Accelerates Tet2(-/-)-Driven Myeloid Malignancy Progression. Stem Cell Reports, 10(1), 166–179. https://doi.org/10.1016/j.stemcr.2017.11.019

    Article  CAS  Google Scholar 

  14. Zhang, P., Chen, Z., Li, R., Guo, Y., Shi, H., Bai, J., Yang, H., Sheng, M., Li, Z., Li, Z., Li, J., Chen, S., Yuan, W., Cheng, T., Xu, M., Zhou, Y., & Yang, F. C. (2018). Loss of ASXL1 in the bone marrow niche dysregulates hematopoietic stem and progenitor cell fates. Cell Discov, 4, 4. https://doi.org/10.1038/s41421-017-0004-z

    Article  CAS  Google Scholar 

  15. Till, J. E., & Mc, C. E. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res, 14, 213–22.

    Article  CAS  Google Scholar 

  16. Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3(4), 393–403. https://doi.org/10.1111/j.1365-2184.1970.tb00347.x

    Article  CAS  Google Scholar 

  17. Mo, M., Wang, S., Zhou, Y., Li, H., & Wu, Y. (2016). Mesenchymal stem cell subpopulations: Phenotype, property and therapeutic potential. Cellular and Molecular Life Sciences, 73(17), 3311–3321. https://doi.org/10.1007/s00018-016-2229-7

    Article  CAS  Google Scholar 

  18. Busser, H., Najar, M., Raicevic, G., Pieters, K., Velez Pombo, R., Philippart, P., Meuleman, N., Bron, D., & Lagneaux, L. (2015). Isolation and Characterization of Human Mesenchymal Stromal Cell Subpopulations: Comparison of Bone Marrow and Adipose Tissue. Stem Cells Dev, 24(18), 2142–2157. https://doi.org/10.1089/scd.2015.0172

    Article  CAS  Google Scholar 

  19. Flores-Figueroa, E., Varma, S., Montgomery, K., Greenberg, P. L., & Gratzinger, D. (2012). Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Laboratory Investigation, 92(9), 1330–1341. https://doi.org/10.1038/labinvest.2012.93

    Article  CAS  Google Scholar 

  20. Kuci, S., Kuci, Z., Kreyenberg, H., Deak, E., Putsch, K., Huenecke, S., Amara, C., Koller, S., Rettinger, E., Grez, M., Koehl, U., Latifi-Pupovci, H., Henschler, R., Tonn, T., von Laer, D., Klingebiel, T., & Bader, P. (2010). CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica, 95(4), 651–659. https://doi.org/10.3324/haematol.2009.015065

    Article  CAS  Google Scholar 

  21. Martin-Rendon, E., Sweeney, D., Lu, F., Girdlestone, J., Navarrete, C., & Watt, S. M. (2008). 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sanguinis, 95(2), 137–148. https://doi.org/10.1111/j.1423-0410.2008.01076.x

    Article  CAS  Google Scholar 

  22. Sorrentino, A., Ferracin, M., Castelli, G., Biffoni, M., Tomaselli, G., Baiocchi, M., Fatica, A., Negrini, M., Peschle, C., & Valtieri, M. (2008). Isolation and characterization of CD146+ multipotent mesenchymal stromal cells. Experimental Hematology, 36(8), 1035–1046. https://doi.org/10.1016/j.exphem.2008.03.004

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (81970120, 81890990), National Key Research and Development Program of China (2020YFE0203000) and CAMS Innovation Fund for Medical Sciences (2017-I2M-3–018).

Author information

Authors and Affiliations

Authors

Contributions

Chao Chen, Rong Li and Yuan Zhou designed the study. Chao Chen, Mingying Zhang and Rong Li performed the experiments. Chao Chen and Mingying Zhang performed RNA-Seq analysis. Jiajia Yuan, Jinqiang Yan, Yuhui Zhang, Wen Xing, Jie Bai and Yuan Zhou discussed and analyzed the data. Chao Chen, Mingying Zhang and Yuan Zhou wrote the manuscript. All authors reviewed, edited, and approved the manuscript.

Corresponding authors

Correspondence to Jie Bai or Yuan Zhou.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committee of Institute of Hematology, and Blood Diseases Hospital, Chinese Academy of Medical Sciences, according to the 1975 Declaration of Helsinki and its later ethical standards. Written informed consent was obtained from all participants included in this study.

Conflicts of interest

The authors declare no conflict of interest, financial or otherwise.

Code Availability

Nothing to declare.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

All authors reviewed and approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhang, M., Li, R. et al. Remodeled CD146+CD271+ Bone Marrow Mesenchymal Stem Cells from Patients with Polycythemia Vera Exhibit Altered Hematopoietic Supportive Activity. Stem Cell Rev and Rep 19, 406–416 (2023). https://doi.org/10.1007/s12015-022-10427-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10427-8

Keywords

Navigation