Skip to main content
Log in

Oct4 dependent chromatin activation is required for chicken primordial germ cell migration

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Primordial germ cells (PGCs) are the undifferentiated progenitors of the gametes. Unlike the poor maintenance of cultured mammalian PGCs, the avian PGCs can be expanded in vitro indefinitely while preserving pluripotency and germline competence. In mammals, the Oct4 is the master transcription factor that ensures the stemness of pluripotent cells such as PGCs, but the specific function of Oct4 in chicken PGCs remains unclear. As expected, the loss of Oct4 in chicken PGCs reduced the expression of key pluripotency factors and promoted the genes involved in endoderm and ectoderm differentiation. Furthermore, the global active chromatin was reduced as shown by the depletion of the H3K27ac upon Oct4 suppression. Interestingly, the de-activated chromatin caused the down-regulation of adjacent genes which are mostly known regulators of cell junction, chemotaxis and cell migration. Consequently, the Oct4-deficient PGCs show impaired cell migration and could not colonize the gonads when re-introduced into the bloodstream of the embryo. We propose that, in addition to maintaining pluripotency, the Oct4 mediated chromatin activation is dictating chicken PGC migration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

All data and materials during this study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Magnúsdóttir, E., & Azim Surani, M. (2014). How to make a primordial germ cell. Development (Cambridge), 141(2), 245–252.

    Article  CAS  Google Scholar 

  2. McLaren, A. (2003). Primordial germ cells in the mouse. Developmental Biology, 262(1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  3. De Felici, M., Scaldaferri, M. L., Lobascio, M., Iona, S., Nazzicone, V., Klinger, F. G., & Farini, D. (2004). Experimental approaches to the study of primordial germ cell lineage and proliferation. Human Reproduction Update, 10(3), 197–206.

    Article  PubMed  Google Scholar 

  4. Kochav, S., Ginsburg, M., & Eyal-Giladi, H. (1980). From cleavage to primitive streak formation: A complementary normal table and a new look at the first stages of the development of the chick: II. Microscopic anatomy and cell population dynamics. Developmental Biology, 79(2), 296–308.

    Article  CAS  PubMed  Google Scholar 

  5. Eyal-Giladi, H., Ginsburg, M., & Farbarov, A. (1981). Avian primordial germ cells are of epiblastic origin. Journal of Embryology and Experimental Morphology, 65(1), 139–147.

    CAS  PubMed  Google Scholar 

  6. Clarkson, B. H. (1951). A series of normal stages in the development of the chick embryo. Morphol, 88, 49–92.

    Article  Google Scholar 

  7. Fujimoto, T., Ukeshima, A., & Kiyofuji, R. (1976). The origin, migration and morphology of the primordial germ cells in the chick embryo. The Anatomical Record, 185(2), 139–153.

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura, Y., Yamamoto, Y., Usui, F., Mushika, T., Ono, T., Setioko, A. R., & Tagami, T. (2007). Migration and proliferation of primordial germ cells in the early chicken embryo. Poultry Science, 86(10), 2182–2193.

    Article  CAS  PubMed  Google Scholar 

  9. Saitou, M., & Yamaji, M. (2012). Primordial germ cells in mice. Cold Spring Harbor Perspectives in Biology, 4(11), 1–19.

    Article  CAS  Google Scholar 

  10. Van de Lavoir, M. C., & Mather-Love, C. (2006). Avian Embryonic Stem Cells. Methods in Enzymology, 418(06), 38–64.

    Article  PubMed  CAS  Google Scholar 

  11. Han, J.Y., & Lee, B.R. (2017). Isolation and Characterization of Chicken Primordial Germ Cells and Their Application in Transgenesis. Methods in Molecular Biology, 1650, 229–242. https://doi.org/10.1007/978-1-4939-7216-6_15

  12. Van De Lavoir, M. C., Diamond, J. H., Leighton, P. A., Mather-Love, C., Heyer, B. S., Bradshaw, R., & Etches, R. J. (2006). Germline transmission of genetically modified primordial germ cells. Nature, 441(7094), 766–769.

    Article  PubMed  CAS  Google Scholar 

  13. Van de Lavoir, M. C., Collarini, E. J., Leighton, P. A., Fesler, J., Lu, D. R., Harriman, W. D., & Etches, R. J. (2012). Interspecific germline transmission of cultured primordial germ cells. PLoS ONE, 7(5), 1–6.

    Google Scholar 

  14. Farini, D., Scaldaferri, M. L., Iona, S., La Sala, G., & De Felici, M. (2005). Growth factors sustain primordial germ cell survival, proliferation and entering into meiosis in the absence of somatic cells. Developmental Biology, 285(1), 49–56.

    Article  CAS  PubMed  Google Scholar 

  15. De Felici, M., Dolci, S., & Pesce, M. (1992). Cellular and molecular aspects of mouse primordial germ cell migration and proliferation in culture. International Journal of Developmental Biology, 36(2), 205–213.

    PubMed  Google Scholar 

  16. Ge, W., Chen, C., Felici, M. D., & Shen, W. (2015). In vitro differentiation of germ cells from stem cells: A comparison between primordial germ cells and in vitro derived primordial germ cell-like cells. Cell Death and Disease, 6(10), 1–10.

    Article  CAS  Google Scholar 

  17. Durcova-Hills, G., Ainscough, J. F. X., & McLaren, A. (2001). Pluripotential stem cells derived from migrating primordial germ cells. Differentiation, 68(4–5), 220–226.

    Article  CAS  PubMed  Google Scholar 

  18. Leitch, H. G., Nichols, J., Humphreys, P., Mulas, C., Martello, G., Lee, C., & Smith, A. (2013). Rebuilding pluripotency from primordial germ cells. Stem Cell Reports, 1(1), 66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matsui, Y., Zsebo, K., & Hogan, B. L. M. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 70(5), 841–847.

    Article  CAS  PubMed  Google Scholar 

  20. Wildon, et al. (1992). (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature, 359, 167–169.

    Google Scholar 

  21. Han, J. Y., Park, T. S., Hong, Y. H., Jeong, D. K., Kim, J. N., Kim, K. D., & Lim, J. M. (2002). Production of germline chimeras by transfer of chicken gonadal primordial germ cells maintained in vitro for an extended period. Theriogenology, 58(8), 1531–1539.

    Article  CAS  PubMed  Google Scholar 

  22. Naito, M., Harumi, T., & Kuwana, T. (2015). Long-term culture of chicken primordial germ cells isolated from embryonic blood and production of germline chimaeric chickens. Animal Reproduction Science, 153, 50–61.

    Article  CAS  PubMed  Google Scholar 

  23. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., & Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3), 379–391.

    Article  CAS  PubMed  Google Scholar 

  24. Boiani, M., Eckardt, S., Schöler, H. R., & John McLaughlin, K. (2002). Oct4 distribution and level in mouse clones: Consequences for pluripotency. Genes and Development, 16(10), 1209–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pesce, M., Wang, X., Wolgemuth, D. J., & Schöler, H. R. (1998). Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mechanisms of Development, 71(1–2), 89–98.

    Article  CAS  PubMed  Google Scholar 

  26. Pardo, M., Lang, B., Yu, L., Prosser, H., Bradley, A., Babu, M. M., & Choudhary, J. (2010). An Expanded Oct4 Interaction Network: Implications for Stem Cell Biology, Development, and Disease. Cell Stem Cell, 6(4), 382–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kehler, J., Tolkunova, E., Koschorz, B., Pesce, M., Gentile, L., Boiani, M., & Tomilin, A. (2004). Oct4 is required for primordial germ cell survival. EMBO Reports, 5(11), 1078–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zafarana, G., Avery, S. R., Avery, K., Moore, H. D., & Andrews, P. W. (2009). Specific knockdown of Oct4 in human embryonic stem cells by inducible short hairpin RNA interference. Stem Cells, 27(4), 776–782.

    Article  CAS  PubMed  Google Scholar 

  29. Niwa, H., Miyazaki, J. I., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24(4), 372–376.

    Article  CAS  PubMed  Google Scholar 

  30. Yang, S. H., Kalkan, T., Morissroe, C., Marks, H., Stunnenberg, H., Smith, A., & Sharrocks, A. D. (2014). Otx2 and Oct4 Drive Early Enhancer Activation during Embryonic Stem Cell Transition from Naive Pluripotency. Cell Reports, 7(6), 1968–1981.

    Article  CAS  PubMed  Google Scholar 

  31. Xiong, L., Tolen, E. A., Choi, J., Caizzi, L., Adachi, K., Cramer, P., & Schöler, H. R. (2021). Oct4 primarily controls enhancer activity rather than accessibility. BioRxiv. https://doi.org/10.1101/2021.06.28.450119

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ding, L., Paszkowski-Rogacz, M., Nitzsche, A., Slabicki, M. M., Heninger, A. K., de Vries, I., & Buchholz, F. (2009). A Genome-Scale RNAi Screen for Oct4 Modulators Defines a Role of the Paf1 Complex for Embryonic Stem Cell Identity. Cell Stem Cell, 4(5), 403–415.

    Article  CAS  PubMed  Google Scholar 

  33. Karwacki-Neisius, V., Göke, J., Osorno, R., Halbritter, F., Ng, J. H., Weiße, A. Y., & Chambers, I. (2013). Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell, 12(5), 531–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Creyghton, M. P., Cheng, A. W., Welstead, G. G., Kooistra, T., Carey, B. W., Steine, E. J., & Jaenisch, R. (2010). Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21931–21936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simandi, Z., Horvath, A., Wright, L. C., Cuaranta-Monroy, I., De Luca, I., Karolyi, K., & Nagy, L. (2016). Oct4 Acts as an Integrator of Pluripotency and Signal-Induced Differentiation. Molecular Cell, 63(4), 647–661.

    Article  CAS  PubMed  Google Scholar 

  36. Bates, L. E., Alves, M. R. P., & Silva, J. C. R. (2021). Auxin-degron system identifies immediate mechanisms of Oct4. Stem Cell Reports, 16(7), 1818–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liao, Y., Smyth, G. K., & Shi, W. (2014). FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930.

    Article  CAS  PubMed  Google Scholar 

  39. Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8

  40. Walter, W., Sánchez-Cabo, F., & Ricote, M. (2015). GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics, 31(17), 2912–2914.

    Article  CAS  PubMed  Google Scholar 

  41. Valero-Mora, P. M. (2010). ggplot2: Elegant Graphics for Data Analysis. Journal of Statistical Software, 35(Book Review 1).

  42. Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nussbaum, C., Myers, R. M., Brown, M., Li, W., & Shirley, X. S. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9(9), R137. https://doi.org/10.1186/gb-2008-9-9-r137

  44. Yu, G., Wang, L. G., & He, Q. Y. (2015). ChIP seeker: An R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics, 31(14), 2382–2383.

    Article  CAS  PubMed  Google Scholar 

  45. Ramírez, F., Ryan, D. P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A. S., & Manke, T. (2016). deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Research, 44(W1), W160–W165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P., & Glass, C. K. (2010). Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Molecular Cell, 38(4), 576–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, J., Witonsky, D., Sprague, E., Alleyne, D., & Kupfer, S. S. (2021). Genomic and epigenomic active vitamin dresponses in human colonic organoids. Physiological Genomics, 53(6), 235–248. https://doi.org/10.1152/physiolgenomics.00150.2020

  48. Liu, J. P., & Jessell, T. M. (1998). A role for rhoB in the delamination of neural crest cells from the dorsal neural tube. Development, 125(24), 5055–5067.

    Article  CAS  PubMed  Google Scholar 

  49. Winklmeier, A., Contreras-Shannon, V., Arndt, S., Melle, C., & Bosserhoff, A. K. (2009). Cadherin-7 interacts with melanoma inhibitory activity protein and negatively modulates melanoma cell migration. Cancer Science, 100(2), 261–268.

    Article  CAS  PubMed  Google Scholar 

  50. Song, J., Kim, D., Chun, C. H., & Jin, E. J. (2012). MicroRNA-375, a new regulator of cadherin-7, suppresses the migration of chondrogenic progenitors. Cellular Signalling, 25(3), 698–706.

    Article  PubMed  CAS  Google Scholar 

  51. Takeuchi, Y., Molyneaux, K., Runyan, C., Schaible, K., & Wylie, C. (2005). The roles of FGF signalling in germ cell migration in the mouse. Development, 132(24), 5399–5409.

    Article  CAS  PubMed  Google Scholar 

  52. Altorki, T., Muller, W., Brass, A., & Cruickshank, S. (2021). The role of β2 integrin in dendritic cell migration during infection. BMC Immunology, 22(1), 1–15.

    Article  CAS  Google Scholar 

  53. Zielich, J., Tzima, E., Schröder, E. A., Jemel, F., Conradt, B., & Lambie, E. J. (2018). Overlapping expression patterns and functions of three paralogous P5B ATPases in Caenorhabditis elegans. PLoS One, 13(3), e0194451. https://doi.org/10.1371/journal.pone.0194451

  54. De Donatis, A., Comito, G., Buricchi, F., Vinci, M. C., Parenti, A., Caselli, A., & Cirri, P. (2008). Proliferation versus migration in platelet-derived growth factor signaling: The key role of endocytosis. Journal of Biological Chemistry, 283(29), 19948–19956.

    Article  PubMed  CAS  Google Scholar 

  55. García-Andreś, C., & Torres, M. (2010). Comparative expression pattern analysis of the highly conserved chemokines SDF1 and CXCL14 during amniote embryonic development. Developmental Dynamics, 239(10), 2769–2777.

    Article  PubMed  CAS  Google Scholar 

  56. Wang, Z., Oron, E., Nelson, B., Razis, S., & Ivanova, N. (2012). Distinct lineage specification roles for NANOG, Oct4, and SOX2 in human embryonic stem cells. Cell Stem Cell, 10(4), 440–454.

    Article  CAS  PubMed  Google Scholar 

  57. Words, K., & Green, A. (2002). Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells, 22(2), 338–346.

    Google Scholar 

  58. Fogarty, N. M. E., McCarthy, A., Snijders, K. E., Powell, B. E., Kubikova, N., Blakeley, P., & Niakan, K. K. (2017). Genome editing reveals a role for Oct4 in human embryogenesis. Nature, 550(7674), 67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, S. M., Lee, M. S., Chang, C. Y., Lin, S. Z., Cheng, E. H., Liu, Y. H., & Su, H. L. (2015). Prerequisite Oct4 maintenance potentiates the neural induction of differentiating human embryonic stem cells and induced pluripotent stem cells. Cell Transplantation, 24(5), 829–844.

    Article  PubMed  Google Scholar 

  60. Pan, G. J., Chang, Z. Y. I., Schöler, H. R., & Pei, D. (2002). Stem cell pluripotency and transcription factor Oct4. Cell Research, 12(5–6), 321–329.

    Article  PubMed  Google Scholar 

  61. Gerri, C., McCarthy, A., Alanis-Lobato, G., Demtschenko, A., Bruneau, A., Loubersac, S., & Niakan, K. K. (2020). Initiation of a conserved trophectoderm program in human, cow and mouse embryos. Nature, 587(7834), 443–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sheng, G., & Stern, C. D. (1999). Gata2 and Gata3: Novel markers for early embryonic polarity and for non-neural ectoderm in the chick embryo. Mechanisms of Development, 87(1–2), 213–216.

    Article  CAS  PubMed  Google Scholar 

  63. Irie, N., Weinberger, L., Tang, W. W. C., Kobayashi, T., Viukov, S., Manor, Y. S., & Surani, M. A. (2015). SOX17 is a critical specifier of human primordial germ cell fate. Cell, 160(1–2), 253–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kanai-azuma, M., Kanai, Y., Gad, J. M., Tajima, Y., Taya, C., Kurohmaru, M., & Tam, P. P. L. (2002). Depletion of definitive gut endoderm in Sox17-null mutant mice. Development, 129(10), 2367–2379.

    Article  CAS  PubMed  Google Scholar 

  65. Lavial, F., Acloque, H., Bertocchini, F., MacLeod, D. J., Boast, S., Bachelard, E., Montillet, G., Thenot, S., Sang, H. M., Stern, C. D., Samarut, J., & Pain, B. (2007). The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development, 134(19), 3549–3563.

    Article  CAS  PubMed  Google Scholar 

  66. Liu, Y., Pelham-Webb, B., Di Giammartino, D. C., Li, J., Kim, D., Kita, K., & Apostolou, E. (2017). Widespread Mitotic Bookmarking by Histone Marks and Transcription Factors in Pluripotent Stem Cells. Cell Reports, 19(7), 1283–1293.

    Article  CAS  PubMed  Google Scholar 

  67. Göke, J., Jung, M., Behrens, S., Chavez, L., O’Keeffe, S., Timmermann, B., Vingron, M. (2011). Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development. PLoS Computational Biology, 7(12).

  68. Wang, G., Zhou, H., Gu, Z., Gao, Q., & Shen, G. (2018). Oct4 promotes cancer cell proliferation and migration and leads to poor prognosis associated with the survivin/STAT3 pathway in hepatocellular carcinoma. Oncology Reports, 40(2), 979–987.

    CAS  PubMed  Google Scholar 

  69. Feng, Y. H., Su, Y. C., Lin, S. F., Lin, P. R., Wu, C. L., Tung, C. L., & Shiau, A. L. (2019). Oct4 upregulates osteopontin via Egr1 and is associated with poor outcome in human lung cancer. BMC Cancer, 19(1), 1–10.

    Article  Google Scholar 

  70. Matthai, C., Horvat, R., Noe, M., Nagele, F., Radjabi, A., van Trotsenburg, M., & Kolbus, A. (2006). Oct-4 expression in human endometrium. Molecular Human Reproduction, 12(1), 7–10.

    Article  CAS  PubMed  Google Scholar 

  71. Chang, J. H., Au, H. K., Lee, W. C., Chi, C. C., Ling, T. Y., Wang, L. M., & Tzeng, C. R. (2013). Expression of the pluripotent transcription factor Oct4 promotes cell migration in endometriosis. Fertility and Sterility, 99(5), 1332-1339.e5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jing Xu for technical support.

Funding

This work was supported by the National Natural Science Foundation of China (31872351) and National Key R&D Program of China (2021YFD1300103).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: LM and GZ. Performed the experiments: LM, HJ, BY, XH and QM. Analyzed the data: SW, YH, HW and LM. Wrote and reviewed the manuscript: LM, HW and GZ.

Corresponding authors

Correspondence to Heng Wang or Guiyu Zhu.

Ethics declarations

Ethical Approval

All chicken experiments were performed according to the protocols of the Huazhong Agricultural University and the Institutional Animal Care and Use Committee.

Consent to Participate

Not applicable.

Consent for Publication

All authors have given their consent for publication.

Competing Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12015_2022_10371_MOESM1_ESM.pdf

Supplementary file1 (PDF 115 KB) Supplementary Figure 1. One major isoform of Oct4 was predominantly expressed in chicken PGCs and ESCs. (A) The RNAseq and qPCR data show that the Oct4A isoform was predominantly expressed in the chicken pluripotent PGCs and ESCs and the expression of Oct4B and Oct4B1 isoforms were extremely low and negligible. (B) The chicken Oct4 locus and the three isoforms detected in PGCs. Several candidate siRNAs were assayed for the knockdown efficiency and the most efficient siRNA was selected for subsequent experiments. The arrowhead points to the siRNA target region. The horizontal arrows indicate the primers.

Supplementary file2 (PDF 527 KB) Supplementary Figure 2. Correlation test between biological replicates of RNA-Seq.

Supplementary file3 (PDF 2815 KB) Supplementary Figure 3. Correlation test between biological replicates of ChIP-Seq.

Supplementary file4 (XLSX 9 KB) Supplementary Table 1

Supplementary file5 (XLSX 9 KB) Supplementary Table 2

Supplementary file6 (XLSX 10 KB) Supplementary Table 3

Supplementary file7 (XLSX 116 KB) Supplementary Table 4

Supplementary file8 (XLSX 18411 KB) Supplementary Table 5

Supplementary file9 (XLSX 1392 KB) Supplementary Table 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Wang, S., Jiang, H. et al. Oct4 dependent chromatin activation is required for chicken primordial germ cell migration. Stem Cell Rev and Rep 18, 2535–2546 (2022). https://doi.org/10.1007/s12015-022-10371-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10371-7

Keywords

Navigation