Skip to main content

Advertisement

Log in

Distinct Effects of the Hippocampal Transplantation of Neural and Mesenchymal Stem Cells in a Transgenic Model of Alzheimer’s Disease

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a severe disabling condition with no cure currently available, which accounts for 60–70% of all dementia cases worldwide. Therefore, the investigation of possible therapeutic strategies for AD is necessary. To this end, animal models corresponding to the main aspects of AD in humans have been widely used. Similar to AD patients, the double transgenic APPswe/PS1dE9 (APP/PS1) mice show cognitive deficits, hyperlocomotion, amyloid-β (Αβ) plaques in the cortex and hippocampus, and exacerbated inflammatory responses. Recent studies have shown that these neuropathological features could be reversed by stem cell transplantation. However, the effects induced by neural (NSC) and mesenchymal (MSC) stem cells has never been compared in an AD animal model. Therefore, the present study aimed to investigate whether transplantation of NSC or MSC into the hippocampus of APP/PS1 mice reverses AD-induced pathological alterations, evaluated by the locomotor activity (open field test), short- and long-term memory (object recognition) tests, Αβ plaques (6-E10), microglia distribution (Iba-1), M1 (iNOS) and M2 (ARG-1) microglial phenotype frequencies. NSC and MSC engraftment reduced the number of Αβ plaques and produced an increase in M2 microglia polarization in the hippocampus of APP/PS1 mice, suggesting an anti-inflammatory effect of stem cell transplantation. NSC also reversed the hyperlocomotor activity and increased the number of microglia in the hippocampus of APP/PS1 mice. No impairment of short or long-term memory was observed in APP/PS1 mice. Overall, this study highlights the potential beneficial effects of transplanting NSC or MSC for AD treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Duncan, T., & Valenzuela, M. (2017). Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Research & Therapy, 8(1), 111. https://doi.org/10.1186/s13287-017-0567-5

    Article  CAS  Google Scholar 

  2. Versijpt, J. (2014). Effectiveness and cost-effectiveness of the pharmacological treatment of Alzheimer’s disease and vascular dementia. Journal of Alzheimer’s disease: JAD, 42(Suppl 3), S19–S25. https://doi.org/10.3233/JAD-132639

    Article  CAS  PubMed  Google Scholar 

  3. Masters, C. L., Bateman, R., Blennow, K., Rowe, C. C., Sperling, R. A., & Cummings, J. L. (2015). Alzheimer’s disease. Nature reviews. Disease Primers, 1, 15056. https://doi.org/10.1038/nrdp.2015.56

    Article  PubMed  Google Scholar 

  4. Leng, F., & Edison, P. (2021). Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nature reviews. Neurology, 17(3), 157–172. https://doi.org/10.1038/s41582-020-00435-y

    Article  PubMed  Google Scholar 

  5. Du, L., Zhang, Y., Chen, Y., Zhu, J., Yang, Y., & Zhang, H. L. (2017). Role of microglia in neurological disorders and their potentials as a therapeutic target. Molecular Neurobiology, 54(10), 7567–7584. https://doi.org/10.1007/s12035-016-0245-0

    Article  CAS  PubMed  Google Scholar 

  6. Kabba, J. A., Xu, Y., Christian, H., Ruan, W., Chenai, K., Xiang, Y., Zhang, L., Saavedra, J. M., & Pang, T. (2018). Microglia: Housekeeper of the Central Nervous System. Cellular and Molecular Neurobiology, 38(1), 53–71. https://doi.org/10.1007/s10571-017-0504-2

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, L., Jiao, G., Ren, S., Zhang, X., Li, C., Wu, W., Wang, H., Liu, H., Zhou, H., & Chen, Y. (2020). Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Research & Therapy, 11(1), 38. https://doi.org/10.1186/s13287-020-1562-9

    Article  CAS  Google Scholar 

  8. Lyman, M., Lloyd, D. G., Ji, X., Vizcaychipi, M. P., & Ma, D. (2014). Neuroinflammation: The role and consequences. Neuroscience Research, 79, 1–12. https://doi.org/10.1016/j.neures.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  9. Liu, L., Liu, Y., Li, N., Huang, R., Zheng, X., Huang, L., Hou, S., & Yuan, Q. (2020). Multiple inflammatory profiles of microglia and altered neuroimages in APP/PS1 transgenic AD mice. Brain Research Bulletin, 156, 86–104. https://doi.org/10.1016/j.brainresbull.2020.01.003

    Article  CAS  PubMed  Google Scholar 

  10. Rath, M., Müller, I., Kropf, P., Closs, E. I., & Munder, M. (2014). Metabolism via arginase or nitric oxide synthase: Two competing arginine pathways in macrophages. Frontiers in Immunology, 5, 532. https://doi.org/10.3389/fimmu.2014.00532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Corraliza, I. M., Soler, G., Eichmann, K., & Modolell, M. (1995). Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochemical and Biophysical Research Communications, 206(2), 667–673. https://doi.org/10.1006/bbrc.1995.1094

    Article  CAS  PubMed  Google Scholar 

  12. Wu, T., Liu, Y., Wang, B., & Li, G. (2014). The roles of mesenchymal stem cells in tissue repair and disease modification. Current Stem Cell Research & Therapy, 9(5), 424–431. https://doi.org/10.2174/1574888x09666140616125446

    Article  CAS  Google Scholar 

  13. Yamasaki, T. R., Blurton-Jones, M., Morrissette, D. A., Kitazawa, M., Oddo, S., & LaFerla, F. M. (2007). Neural stem cells improve memory in an inducible mouse model of neuronal loss. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 27(44), 11925–11933. https://doi.org/10.1523/JNEUROSCI.1627-07.2007

    Article  CAS  Google Scholar 

  14. Wang, Q., Matsumoto, Y., Shindo, T., Miyake, K., Shindo, A., Kawanishi, M., Kawai, N., Tamiya, T., & Nagao, S. (2006). Neural stem cells transplantation in cortex in a mouse model of Alzheimer’s disease. The Journal of Medical investigation: JMI, 53(1–2), 61–69. https://doi.org/10.2152/jmi.53.61

    Article  PubMed  Google Scholar 

  15. Liu, S. P., Fu, R. H., Huang, S. J., Huang, Y. C., Chen, S. Y., Chang, C. H., Liu, C. H., Tsai, C. H., Shyu, W. C., & Lin, S. Z. (2013). Stem cell applications in regenerative medicine for neurological disorders. Cell Transplantation, 22(4), 631–637. https://doi.org/10.3727/096368912X655145

    Article  PubMed  Google Scholar 

  16. Adami, R., Scesa, G., & Bottai, D. (2014). Stem cell transplantation in neurological diseases: Improving effectiveness in animal models. Frontiers in Cell and Developmental Biology, 2, 17. https://doi.org/10.3389/fcell.2014.00017

    Article  PubMed  PubMed Central  Google Scholar 

  17. de Godoy, M. A., Saraiva, L. M., de Carvalho, L., Vasconcelos-Dos-Santos, A., Beiral, H., Ramos, A. B., Silva, L., Leal, R. B., Monteiro, V., Braga, C. V., de Araujo-Silva, C. A., Sinis, L. C., Bodart-Santos, V., Kasai-Brunswick, T. H., Alcantara, C. L., Lima, A., da Cunha-E Silva, N. L., Galina, A., Vieyra, A., De Felice, F. G., … Ferreira, S. T. (2018). Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. The Journal of Biological Chemistry, 293(6), 1957–1975.https://doi.org/10.1074/jbc.M117.807180

  18. Naaldijk, Y., Jäger, C., Fabian, C., Leovsky, C., Blüher, A., Rudolph, L., Hinze, A., & Stolzing, A. (2017). Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice. Neuropathology and Applied Neurobiology, 43(4), 299–314. https://doi.org/10.1111/nan.12319

    Article  CAS  PubMed  Google Scholar 

  19. Hosseini, S. A., Mohammadi, R., Noruzi, S., Mohamadi, Y., Azizian, M., Mousavy, S. M., Ghasemi, F., Hesari, A., Sahebkar, A., Salarinia, R., Aghdam, A. M., & Mirzaei, H. (2018). Stem cell- and gene-based therapies as potential candidates in Alzheimer’s therapy. Journal of Cellular Biochemistry, 119(11), 8723–8736. https://doi.org/10.1002/jcb.27202

    Article  CAS  PubMed  Google Scholar 

  20. Majka, S. M., Jackson, K. A., Kienstra, K. A., Majesky, M. W., Goodell, M. A., & Hirschi, K. K. (2003). Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. The Journal of Clinical Investigation, 111(1), 71–79. https://doi.org/10.1172/JCI16157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deleyrolle, L. P., & Reynolds, B. A. (2009). Isolation, expansion, and differentiation of adult Mammalian neural stem and progenitor cells using the neurosphere assay. Methods in Molecular Biology (Clifton, N.J.), 549, 91–101. https://doi.org/10.1007/978-1-60327-931-4_7

    Article  CAS  Google Scholar 

  22. Gage, F. H. (2000). Mammalian neural stem cells. Science (New York, N.Y.), 287(5457), 1433–1438. https://doi.org/10.1126/science.287.5457.1433

    Article  CAS  Google Scholar 

  23. Garcia-Alloza, M., Robbins, E. M., Zhang-Nunes, S. X., Purcell, S. M., Betensky, R. A., Raju, S., Prada, C., Greenberg, S. M., Bacskai, B. J., & Frosch, M. P. (2006). Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiology of Disease, 24(3), 516–524. https://doi.org/10.1016/j.nbd.2006.08.017

    Article  CAS  PubMed  Google Scholar 

  24. Kametani, F., & Hasegawa, M. (2018). Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer’s Disease. Frontiers in Neuroscience, 12, 25. https://doi.org/10.3389/fnins.2018.00025

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang, W., Wang, P. J., Sha, H. Y., Ni, J., Li, M. H., & Gu, G. J. (2014). Neural stem cell transplants improve cognitive function without altering amyloid pathology in an APP/PS1 double transgenic model of Alzheimer’s disease. Molecular Neurobiology, 50(2), 423–437. https://doi.org/10.1007/s12035-014-8640-x

    Article  CAS  PubMed  Google Scholar 

  26. Wuo-Silva, R., Fukushiro, D. F., Hollais, A. W., Santos-Baldaia, R., Mári-Kawamoto, E., Berro, L. F., Yokoyama, T. S., Lopes-Silva, L. B., Bizerra, C. S., Procópio-Souza, R., Hashiguchi, D., Figueiredo, L. A., Costa, J. L., Frussa-Filho, R., & Longo, B. M. (2016). Modafinil induces rapid-onset behavioral sensitization and cross-sensitization with cocaine in mice: Implications for the addictive potential of modafinil. Frontiers in Pharmacology, 7, 420. https://doi.org/10.3389/fphar.2016.00420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clarke, A., & Ludington, J. D. (2018). Thai Norms for Name, Image, and Category Agreement, Object Familiarity, Visual Complexity, Manipulability, and Age of Acquisition for 480 Color Photographic Objects. Journal of Psycholinguistic Research, 47(3), 607–626. https://doi.org/10.1007/s10936-017-9544-5

    Article  PubMed  Google Scholar 

  28. Alves, J. M., Martins, A. H., Lameu, C., Glaser, T., Boukli, N. M., Bassaneze, V., Dariolli, R., Nascimento, I. C., Martins, P., de Souza, H., Krieger, J. E., Casarini, D. E., Sales, V. M., Pesquero, J. B., & Ulrich, H. (2019). Kinin-B2 Receptor Activity in Skeletal Muscle Regeneration and Myoblast Differentiation. Stem Cell Reviews and Reports, 15(1), 48–58. https://doi.org/10.1007/s12015-018-9850-9

    Article  CAS  PubMed  Google Scholar 

  29. Wang, J., He, X., Meng, H., Li, Y., Dmitriev, P., Tian, F., Page, J. C., Lu, Q. R., & He, Z. (2020). Robust myelination of regenerated axons induced by combined manipulations of GPR17 and microglia. Neuron, 108(5), 876-886.e4. https://doi.org/10.1016/j.neuron.2020.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, L., Dong, Z. F., & Zhang, J. Y. (2020). Immunomodulatory role of mesenchymal stem cells in Alzheimer’s disease. Life sciences, 246, 117405. https://doi.org/10.1016/j.lfs.2020.117405

  31. Yang, H., Yang, H., Xie, Z., Wei, L., & Bi, J. (2013). Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AβPPswe/PS1dE9 transgenic mice. PLoS ONE, 8(7), e69129. https://doi.org/10.1371/journal.pone.0069129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hayashi, Y., Lin, H. T., Lee, C. C., & Tsai, K. J. (2020). Effects of neural stem cell transplantation in Alzheimer’s disease models. Journal of Biomedical Science, 27(1), 29. https://doi.org/10.1186/s12929-020-0622-x

  33. Jimenez, S., Baglietto-Vargas, D., Caballero, C., Moreno-Gonzalez, I., Torres, M., Sanchez-Varo, R., Ruano, D., Vizuete, M., Gutierrez, A., & Vitorica, J. (2008). Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: Age-dependent switch in the microglial phenotype from alternative to classic. The Journal of Neuroscience: the Official Journal Of the Society for Neuroscience, 28(45), 11650–11661. https://doi.org/10.1523/JNEUROSCI.3024-08.2008

    Article  CAS  Google Scholar 

  34. Zhang, F., Zhong, R., Li, S., Fu, Z., Cheng, C., Cai, H., & Le, W. (2017). Acute hypoxia induced an imbalanced M1/M2 activation of microglia through NF-κB signaling in Alzheimer’s disease mice and wild-type littermates. Frontiers in aging neuroscience, 9, 282. https://doi.org/10.3389/fnagi.2017.00282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wan, W., Zhang, C., Danielsen, M., Li, Q., Chen, W., Chan, Y., & Li, Y. (2016). EGb761 improves cognitive function and regulates inflammatory responses in the APP/PS1 mouse. Experimental Gerontology, 81, 92–100. https://doi.org/10.1016/j.exger.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  36. Ahn, J. W., Jang, S. K., Jo, B. R., Kim, H. S., Park, J. Y., Park, H. Y., Yoo, Y. M., & Joo, S. S. (2021). A therapeutic intervention for Alzheimer's disease using ginsenoside Rg3: its role in M2 microglial activation and non-amyloidogenesis. Journal of Physiology and Pharmacology: an Official Journal of the Polish Physiological Society, 72(2), https://doi.org/10.26402/jpp.2021.2.04

  37. Mandrekar-Colucci, S., Karlo, J. C., & Landreth, G. E. (2012). Mechanisms underlying the rapid peroxisome proliferator-activated receptor-γ-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 32(30), 10117–10128. https://doi.org/10.1523/JNEUROSCI.5268-11.2012

    Article  CAS  Google Scholar 

  38. Hashiguchi, D., Campos, H. C., Wuo-Silva, R., Faber, J., Gomes da Silva, S., Coppi, A. A., et al. (2020). Resistance Exercise Decreases Amyloid Load and Modulates Inflammatory Responses in the APP/PS1 Mouse Model for Alzheimer’s Disease. Journal of Alzheimer’s disease : JAD, 73(4), 1525–1539. https://doi.org/10.3233/JAD-190729.

    Article  CAS  PubMed  Google Scholar 

  39. Zanier, E. R., Pischiutta, F., Riganti, L., Marchesi, F., Turola, E., Fumagalli, S., Perego, C., Parotto, E., Vinci, P., Veglianese, P., D’Amico, G., Verderio, C., & De Simoni, M.-G. (2014). Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics, 11(3), 679–695. https://doi.org/10.1007/s13311-014-0277-y

    Article  CAS  Google Scholar 

  40. Ji, Z., Jiang, X., Li, Y., Song, J., Chai, C., & Lu, X. (2020). Neural stem cells induce M2 polarization of macrophages through the upregulation of interleukin-4. Experimental and Therapeutic Medicine, 20(6), 148. https://doi.org/10.3892/etm.2020.9277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao, J., Grill, R. J., Dunn, T. J., Bedi, S., Labastida, J. A., Hetz, R. A., Xue, H., Thonhoff, J. R., DeWitt, D. S., Prough, D. S., Cox, C. S., Jr., & Wu, P. (2016). Human neural stem cell transplantation-mediated alteration of microglial/macrophage phenotypes after traumatic brain injury. Cell Transplantation, 25(10), 1863–1877. https://doi.org/10.3727/096368916X691150

    Article  PubMed  Google Scholar 

  42. Yu, C. Y., Ng, G., & Liao, P. (2013). Therapeutic antibodies in stroke. Translational Stroke Research, 4(5), 477–483. https://doi.org/10.1007/s12975-013-0281-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Satlin, A., Volicer, L., Ross, V., Herz, L., & Campbell, S. (1992). Bright light treatment of behavioral and sleep disturbances in patients with Alzheimer’s disease. The American Journal of Psychiatry, 149(8), 1028–1032. https://doi.org/10.1176/ajp.149.8.1028

    Article  CAS  PubMed  Google Scholar 

  44. Telias, M., & Ben-Yosef, D. (2015). Neural stem cell replacement: A possible therapy for neurodevelopmental disorders? Neural Regeneration Research, 10(2), 180–182. https://doi.org/10.4103/1673-5374.152361

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu, F., Xuan, A., Chen, Y., Zhang, J., Xu, L., Yan, Q., & Long, D. (2014). Combined effect of nerve growth factor and brain-derived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms. Molecular Medicine Reports, 10(4), 1739–1745. https://doi.org/10.3892/mmr.2014.2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, C. C., Lien, C. C., Hou, W. H., Chiang, P. M., & Tsai, K. J. (2016). Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer’s disease. Scientific Reports, 6, 27358. https://doi.org/10.1038/srep27358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marsh, S. E., & Blurton-Jones, M. (2017). Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochemistry International, 106, 94–100. https://doi.org/10.1016/j.neuint.2017.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Simard, A. R., Soulet, D., Gowing, G., Julien, J. P., & Rivest, S. (2006). Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron, 49(4), 489–502. https://doi.org/10.1016/j.neuron.2006.01.022

    Article  CAS  PubMed  Google Scholar 

  49. Ma, T., Gong, K., Ao, Q., Yan, Y., Song, B., Huang, H., Zhang, X., & Gong, Y. (2013). Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell Transplantation, 22(Suppl 1), S113–S126. https://doi.org/10.3727/096368913X672181

    Article  PubMed  Google Scholar 

  50. Cheng, D., Low, J. K., Logge, W., Garner, B., & Karl, T. (2014). Novel behavioural characteristics of female APPSwe/PS1ΔE9 double transgenic mice. Behavioural Brain Research, 260, 111–118. https://doi.org/10.1016/j.bbr.2013.11.046

    Article  PubMed  Google Scholar 

  51. Stover, K. R., Campbell, M. A., Van Winssen, C. M., & Brown, R. E. (2015). Early detection of cognitive deficits in the 3xTg-AD mouse model of Alzheimer’s disease. Behavioural Brain Research, 289, 29–38. https://doi.org/10.1016/j.bbr.2015.04.012

  52. Lok, K., Zhao, H., Shen, H., Wang, Z., Gao, X., Zhao, W., & Yin, M. (2013). Characterization of the APP/PS1 mouse model of Alzheimer’s disease in senescence accelerated background. Neuroscience Letters, 557(Pt B), 84–89. https://doi.org/10.1016/j.neulet.2013.10.051

    Article  CAS  PubMed  Google Scholar 

  53. Hanna, A., Iremonger, K., Das, P., Dickson, D., Golde, T., & Janus, C. (2012). Age-related increase in amyloid plaque burden is associated with impairment in conditioned fear memory in CRND8 mouse model of amyloidosis. Alzheimer’s Research & Therapy, 4(3), 21. https://doi.org/10.1186/alzrt124

    Article  CAS  Google Scholar 

  54. Benice, T. S., Rizk, A., Kohama, S., Pfankuch, T., & Raber, J. (2006). Sex-differences in age-related cognitive decline in C57BL/6J mice associated with increased brain microtubule-associated protein 2 and synaptophysin immunoreactivity. Neuroscience, 137(2), 413–423. https://doi.org/10.1016/j.neuroscience.2005.08.029

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, D., Liu, H., Li, C., Wang, F., Shi, Y., Liu, L., Zhao, X., Liu, A., Zhang, J., Wang, C., & Chen, Z. (2016). Atorvastatin ameliorates cognitive impairment, Aβ1-42 production and Tau hyperphosphorylation in APP/PS1 transgenic mice. Metabolic Brain Disease, 31(3), 693–703. https://doi.org/10.1007/s11011-016-9803-4

    Article  CAS  PubMed  Google Scholar 

  56. Denver, P., English, A., & McClean, P. L. (2018). Inflammation, insulin signaling and cognitive function in aged APP/PS1 mice. Brain, Behavior, and Immunity, 70, 423–434. https://doi.org/10.1016/j.bbi.2018.03.032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the CEDEME animal facility (Centro de Desenvolvimento de Modelos Experimentais para Biologia e Medicina) for providing us with the double-transgenic APPswe/PS1dE9 mice.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001, scholarship 88882.330549/2019–01, as well as by the São Paulo Research Foundation (FAPESP project No. 2017/12412–2 awarded to BML and 2018/07366–4 awarded to HU), the National Council for Scientific and Technological Development (CNPq), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science & Technology Program of Sichuan Province, China (2019YFH0108).

Author information

Authors and Affiliations

Authors

Contributions

Henrique Correia Campos conducted the experiments and wrote the manuscript; Deidiane Elisa Ribeiro conducted the experiments, data analysis and wrote the manuscript; Debora Hashiguchi performed experiments, data analysis and revised the paper; Deborah Y Hukuda performed experiments and analysis; Christiane Gimenes performed experiments; Simone A A Romariz performed experiments and statistical analysis, designed figures and wrote the paper; Qing Ye contributed to data analysis and revised the manuscript; Yong Tang contributed to the construction of the manuscript and revised the paper; Henning Ulrich provided financing, assisted with the use of the TissueFAXS cytometer, contributed to writing and revised the manuscript, and Beatriz Monteiro Longo supervised the work, wrote and revised the manuscript.

Corresponding author

Correspondence to Beatriz Monteiro Longo.

Ethics declarations

Ethical Approval

All the procedures followed the Ethical Guidelines for the Use of Animals and were approved by the local commission (Comissão de Ética no Uso de Animais, Universidade Federal de São Paulo), process nº 9268250618, and the National Council for Scientific and Technological Development (CNPq).

Consent to Participate

Not applicable.

Consent to Publish

All authors have approved the final version of the manuscript.

Competing Interests

H.U. declares consulting activities for TissueGnostics GmbH, Vienna, Austria. The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Special issue on Neurogenesis and Neurodegeneration: Basic Research and Clinic Applications

Guest Editor: Henning Ulrich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, H.C., Ribeiro, D.E., Hashiguchi, D. et al. Distinct Effects of the Hippocampal Transplantation of Neural and Mesenchymal Stem Cells in a Transgenic Model of Alzheimer’s Disease. Stem Cell Rev and Rep 18, 781–791 (2022). https://doi.org/10.1007/s12015-021-10321-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10321-9

Keywords

Navigation