Skip to main content
Log in

CaMKK2 Knockout Bone Marrow Cells Collected/Processed in Low Oxygen (Physioxia) Suggests CaMKK2 as a Hematopoietic Stem to Progenitor Differentiation Fate Determinant

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Little is known about a regulatory role of CaMKK2 for hematopoietic stem (HSC) and progenitor (HPC) cell function. To assess this, we used Camkk2−/− and wild type (WT) control mouse bone marrow (BM) cells. BM cells were collected/processed and compared under hypoxia (3% oxygen; physioxia) vs. ambient air (~21% oxygen). Subjecting cells collected to ambient air, even for a few minutes, causes a stress that we termed Extra Physiological Shock/Stress (EPHOSS) that causes differentiation of HSCs and HPCs. We consider physioxia collection/processing a more relevant way to assess HSC/HPC numbers and function, as the cells remain in an oxygen tension closer physiologic conditions. Camkk2−/− cells collected/processed at 3% oxygen had positive and negative effects respectively on HSCs (by engraftment using competitive transplantation with congenic donor and competitor cells and lethally irradiated congenic recipient mice), and HPCs (by colony forming assays of CFU-GM, BFU-E, and CFU-GEMM) compared to WT cells processed in ambient air. Thus, with cells collected/processed under physioxia, and therefore never exposed and naïve to ambient air conditions, CaMKK2 not only appears to act as an HSC to HPC differentiation fate determinant, but as we found for other intracellular mediators, the Camkk−/− mouse BM cells were relatively resistant to effects of EPHOSS. This information is of potential use for modulation of WT BM HSCs and HPCs for future clinical advantage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

All data is present in this paper, and material is available upon request.

Code Availability

Not applicable.

References

  1. Shaheen, M. & Broxmeyer H.E. (2013). Principles of cytokine signaling. In: Hematology: Basic principles and practice, 6th edition (Ed. Hoffman, R., Benz, E.J., Jr., Silberstein, L.E., Heslop, H., Weitz, J.I., & Anastasi, J.). Elsevier Saunders, Philadelphia, PA. Chapter 14. pp. 136-146.

  2. Broxmeyer, H.E. & Capitano, M.L. (2022). Cytokines/Chemokines/Other Growth Regulators and Their Receptors. Hematology: Basic Principles and Practice, Eighth Edition (Ed. Hoffman, R., et al.). Accepted, and in print 2022.

  3. Shaheen, M. & Broxmeyer, H.E. (2018). Cytokine/receptor families and signal transduction. In: Hematology: Basic principles and practice. 7th edition (Ed. Hoffman, R., Benz, E., Silberstein, L., Heslop, H., Weitz, J.I., and Anastasi, J., Salama, M.E., & Abutalib, S.A.). Chapter 16. Pages 163-175.

  4. Marcelo, K. L., Means, A. R., & York, B. (2016). The Ca(2+)/Calmodulin/CaMKK2 Axis: Nature's metabolic CaMshaft. Trends in Endocrinology and Metabolism: TEM, 27(10), 706–718. https://doi.org/10.1016/j.tem.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  5. Racioppi, L., & Means, A. R. (2012). Calcium/calmodulin-dependent protein kinase kinase 2: Roles in signaling and pathophysiology. The Journal of Biological Chemistry, 287(38), 31658–31665. https://doi.org/10.1074/jbc.R112.356485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yan, Y., Zhou, X. E., Xu, H. E., & Melcher, K. (2018). Structure and physiological regulation of AMPK. International Journal of Molecular Sciences, 19(11), 3534. https://doi.org/10.3390/ijms19113534

    Article  CAS  PubMed Central  Google Scholar 

  7. Williams, J. N., & Sankar, U. (2019). CaMKK2 signaling in metabolism and skeletal disease: A new Axis with therapeutic potential. Current Osteoporosis Reports, 17(4), 169–177. https://doi.org/10.1007/s11914-019-00518-w

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dengler, F. (2020). Activation of AMPK under hypoxia: Many roads leading to Rome. International Journal of Molecular Sciences, 21(7), 2428. https://doi.org/10.3390/ijms21072428

    Article  CAS  PubMed Central  Google Scholar 

  9. Jacquel, A., Luciano, F., Robert, G., & Auberger, P. (2018). Implication and regulation of AMPK during physiological and pathological myeloid differentiation. International Journal of Molecular Sciences, 19(10), 2991. https://doi.org/10.3390/ijms19102991

    Article  CAS  PubMed Central  Google Scholar 

  10. Williams, J. N., Kambrath, A. V., Patel, R. B., Kang, K. S., Mével, E., Li, Y., Cheng, Y. H., Pucylowski, A. J., Hassert, M. A., Voor, M. J., Kacena, M. A., Thompson, W. R., Warden, S. J., Burr, D. B., Allen, M. R., Robling, A. G., & Sankar, U. (2018). Inhibition of CaMKK2 enhances fracture healing by stimulating Indian hedgehog signaling and accelerating endochondral ossification. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 33(5), 930–944. https://doi.org/10.1002/jbmr.3379

    Article  CAS  Google Scholar 

  11. Sankar, U., Pritchard, Z. J., & Voor, M. J. (2016). Micro-computed tomography assisted distal femur metaphyseal blunt punch compression for determining trabecular bone strength in mice. Journal of Biomechanics, 49(7), 1233–1237. https://doi.org/10.1016/j.jbiomech.2016.02.040

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pritchard, Z. J., Cary, R. L., Yang, C., Novack, D. V., Voor, M. J., & Sankar, U. (2015). Inhibition of CaMKK2 reverses age-associated decline in bone mass. Bone, 75, 120–127. https://doi.org/10.1016/j.bone.2015.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cary, R. L., Waddell, S., Racioppi, L., Long, F., Novack, D. V., Voor, M. J., & Sankar, U. (2013). Inhibition of Ca2+/calmodulin-dependent protein kinase kinase 2 stimulates osteoblast formation and inhibits osteoclast differentiation. Journal of Bone and Mineral Research : the Official Journal of the American Society for Bone and Mineral Research, 28(7), 1599–1610. https://doi.org/10.1002/jbmr.1890

    Article  CAS  Google Scholar 

  14. Teng, E. C., Racioppi, L., & Means, A. R. (2011). A cell-intrinsic role for CaMKK2 in granulocyte lineage commitment and differentiation. Journal of Leukocyte Biology, 90(5), 897–909. https://doi.org/10.1189/jlb.0311152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Racioppi, L., Lento, W., Huang, W., Arvai, S., Doan, P. L., Harris, J. R., Marcon, F., Nakaya, H. I., Liu, Y., & Chao, N. (2017). Calcium/calmodulin-dependent kinase kinase 2 regulates hematopoietic stem and progenitor cell regeneration. Cell Death & Disease, 8(10), e3076. https://doi.org/10.1038/cddis.2017.474

    Article  Google Scholar 

  16. Mantel, C. R., O'Leary, H. A., Chitteti, B. R., Huang, X., Cooper, S., Hangoc, G., Brustovetsky, N., Srour, E. F., Lee, M. R., Messina-Graham, S., Haas, D. M., Falah, N., Kapur, R., Pelus, L. M., Bardeesy, N., Fitamant, J., Ivan, M., Kim, K. S., & Broxmeyer, H. E. (2015). Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell, 161(7), 1553–1565. https://doi.org/10.1016/j.cell.2015.04.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Racioppi, L., Noeldner, P. K., Lin, F., Arvai, S., & Means, A. R. (2012). Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses. The Journal of Biological Chemistry, 287(14), 11579–11591. https://doi.org/10.1074/jbc.M111.336032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Racioppi, L., Nelson, E. R., Huang, W., Mukherjee, D., Lawrence, S. A., Lento, W., Masci, A. M., Jiao, Y., Park, S., York, B., Liu, Y., Baek, A. E., Drewry, D. H., Zuercher, W. J., Bertani, F. R., Businaro, L., Geradts, J., Hall, A., Means, A. R., … McDonnell, D. P. (2019). CaMKK2 in myeloid cells is a key regulator of the immune-suppressive microenvironment in breast cancer. Nature Communications, 10(1), 2450. https://doi.org/10.1038/s41467-019-10424-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, W., Liu, Y., Luz, A., Berrong, M., Meyer, J. N., Zou, Y., Swann, E., Sundaramoorthy, P., Kang, Y., Jauhari, S., Lento, W., Chao, N., & Racioppi, L. (2021). Calcium/calmodulin dependent protein kinase kinase 2 regulates the expansion of tumor-induced myeloid-derived suppressor cells. Frontiers in Immunology, 12, 754083. https://doi.org/10.3389/fimmu.2021.754083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Broxmeyer, H. E., O'Leary, H. A., Huang, X., & Mantel, C. (2015). The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo. Current Opinion in Hematology, 22(4), 273–278. https://doi.org/10.1097/MOH.0000000000000144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aljoufi, A., Cooper, S., & Broxmeyer, H. E. (2020). Collection and processing of mobilized mouse peripheral blood at lowered oxygen tension yields enhanced numbers of hematopoietic stem cells. Stem Cell Reviews and Reports, 16(5), 946–953. https://doi.org/10.1007/s12015-020-10021-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Broxmeyer, H. E., Capitano, M. L., Cooper, S., Potchanant, E. S., & Clapp, D. W. (2021). Numbers of long-term hematopoietic stem cells from bone marrow of fanca and fancc knockout mice can be greatly enhanced by their collection and processing in physioxia conditions. Blood Cells, Molecules & Diseases, 86, 102492. https://doi.org/10.1016/j.bcmd.2020.102492

    Article  CAS  Google Scholar 

  23. Capitano, M. L., Mohamad, S. F., Cooper, S., Guo, B., Huang, X., Gunawan, A. M., Sampson, C., Ropa, J., Srour, E. F., Orschell, C. M., & Broxmeyer, H. E. (2021). Mitigating oxygen stress enhances aged mouse hematopoietic stem cell numbers and function. The Journal of Clinical Investigation, 131(1), e140177. https://doi.org/10.1172/JCI140177

    Article  CAS  PubMed Central  Google Scholar 

  24. Anderson, K. A., Ribar, T. J., Lin, F., Noeldner, P. K., Green, M. F., Muehlbauer, M. J., Witters, L. A., Kemp, B. E., & Means, A. R. (2008). Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metabolism, 7(5), 377–388. https://doi.org/10.1016/j.cmet.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  25. Broxmeyer, H. E., Hoggatt, J., O'Leary, H. A., Mantel, C., Chitteti, B. R., Cooper, S., Messina-Graham, S., Hangoc, G., Farag, S., Rohrabaugh, S. L., Ou, X., Speth, J., Pelus, L. M., Srour, E. F., & Campbell, T. B. (2012). Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nature Medicine, 18(12), 1786–1796. https://doi.org/10.1038/nm.2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, Y., Yao, C., Teng, Y., Jiang, R., Huang, X., Liu, S., Wan, J., Broxmeyer, H. E., & Guo, B. (2019). Phorbol ester induced ex vivo expansion of rigorously-defined phenotypic but not functional human cord blood hematopoietic stem cells: A cautionary tale demonstrating that phenotype does not always recapitulate stem cell function. Leukemia, 33(12), 2962–2966. https://doi.org/10.1038/s41375-019-0528-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Profeta, G. S., Dos Reis, C. V., Santiago, A., Godoi, P., Fala, A. M., Wells, C. I., Sartori, R., Salmazo, A., Ramos, P. Z., Massirer, K. B., Elkins, J. M., Drewry, D. H., Gileadi, O., & Couñago, R. M. (2019). Binding and structural analyses of potent inhibitors of the human Ca2+/calmodulin dependent protein kinase kinase 2 (CAMKK2) identified from a collection of commercially-available kinase inhibitors. Scientific Reports, 9(1), 16452. https://doi.org/10.1038/s41598-019-52795-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

These studies were supported by NIH R35 HL139599 (Outstanding Investigator Award) and U54 DK 106846 (Cooperative Center of Excellence in Hematology (CCEH)) to H.E.B. J.R. was supported as a post-doctoral fellow on T32 DK 007519 to H.E.B. U.S. was supported by R01AR068332 (NIAMS/NIH). LR was supported by NIH 2U19AI067798-16.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Hal E. Broxmeyer.

Methodology: James Ropa, Maegan L. Capitano, Scott Cooper, Uma Sankar.

Formal analysis and investigation: Hal E. Broxmeyer, James Ropa, Maegan L. Capitano, Scott Cooper, Uma Sankar.

Writing - original draft preparation: Hal E. Broxmeyer, James Ropa, Maegan L. Capitano, Scott Cooper.

Writing - review and editing: Hal E. Broxmeyer, James Ropa, Maegan L. Capitano, Scott Cooper, Luigi Racioppi, Uma Sankar.

Funding acquisition: Hal E. Broxmeyer, Luigi Racioppi, Uma Sankar.

Resources: Hal E. Broxmeyer, Uma Sankar.

Supervision: Hal E. Broxmeyer.

Corresponding author

Correspondence to James Ropa.

Ethics declarations

Ethics Approval

No problems with ethics approval.

Consent to Participate

All authors consented to participate.

Consent for Publication

All authors consented to publish this paper.

Conflicts of Interest/Competing Interests

No COI from any co-authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broxmeyer, H.E., Ropa, J., Capitano, M.L. et al. CaMKK2 Knockout Bone Marrow Cells Collected/Processed in Low Oxygen (Physioxia) Suggests CaMKK2 as a Hematopoietic Stem to Progenitor Differentiation Fate Determinant. Stem Cell Rev and Rep 18, 2513–2521 (2022). https://doi.org/10.1007/s12015-021-10306-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10306-8

Keywords

Navigation