Skip to main content

Advertisement

Log in

Insights into the Regulation on Proliferation and Differentiation of Stem Leydig Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Male hypogonadism is a clinical syndrome caused by testosterone deficiency. Hypogonadism can be caused by testicular disease (primary hypogonadism) or hypothalamic-pituitary dysfunction (secondary hypogonadism). The present strategy for treating hypogonadism is the administration of exogenous testosterone. But exogenous testosterone is reported to have negative side effects including adverse cardiovascular events and disruption of physiological spermatogenesis probably due to its inability to mimic the physiological circadian rhythm of testosterone secretion in vivo. In recent years, a growing number of articles demonstrated that stem Leydig cells (SLCs) can not only differentiate into functional Leydig cells (LCs) in vivo to replace chemically disrupted LCs, but also secrete testosterone in a physiological pattern. The proliferation and differentiation of SLCs are regulated by various factors. However, the mechanisms involved in regulating the development of SLCs remain to be summarized. Factors involved in the regulation of SLCs can be divided into environmental pollutants, growth factors, cytokine and hormones. Environmental pollutants such as Perfluorooctanoic acid (PFOA) and Triphenyltin (TPT) could suppress SLCs proliferation or differentiation. Growth factors including FGF1, FGF16, NGF and activin A are essential for the maintenance of SLCs self-renewal and differentiation. Interleukin 6 family could inhibit differentiation of SLCs. Among hormones, dexamethasone suppresses SLCs differentiation, while aldosterone suppresses their proliferation. The present review focuses on new progress about factors regulating SLC’s proliferation and differentiation which will undoubtedly deepen our insights into SLCs and help make better clinical use of them.

Graphical abstract

Different factors affect on the proliferation and differentiation of stem Leydig cells.

Firstly, each rat was intraperitoneally injected EDS so as to deplete Leydig cells from the adult testis. Secondly, the CD51+ or CD90+ cells from the testis of rats are SLCs, and the p75+ cells from human adult testes are human SLCs. These SLCs in the testis start to proliferate and some of them differentiate into LCs. Thirdly, during the SLCs regeneration period, researchers could explore different function of those factors (pollutants, growth factors, cytokines and hormones) towards SLCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allan, C. A., & McLachlan, R. I. (2004). Age-related changes in testosterone and the role of replacement therapy in older men. Clinical Endocrinology, 60, 653–670.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, P., Zirkin, B. R., & Chen, H. (2020). Stem leydig cells in the adult testis: Characterization, regulation and potential applications. Endocrine Reviews, 41(1), 22–32. https://doi.org/10.1210/endrev/bnz013.

    Article  Google Scholar 

  3. Carrasquillo, R., Chu, K., & Ramasamy, R. (2018). Novel therapy for male Hypogonadism. Current Urology Reports, 19, 63.

    Article  PubMed  Google Scholar 

  4. Carcaillon, L., Brailly-Tabard, S., Ancelin, M. L., Tzourio, C., Foubert-Samier, A., Dartigues, J. F., Guiochon-Mantel, A., & Scarabin, P. Y. (2014). Low testosterone and the risk of dementia in elderly men: Impact of age and education. Alzheimers Dement, 10, S306–S314.

    Article  PubMed  Google Scholar 

  5. Peak, T. C., Haney, N. M., Wang, W., DeLay, K. J., & Hellstrom, W. J. (2016). Stem cell therapy for the treatment of Leydig cell dysfunction in primary hypogonadism. World J Stem Cells, 8, 306–315.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stellato, R. K., Feldman, H. A., Hamdy, O., Horton, E. S., & McKinlay, J. B. (2000). Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: Prospective results from the Massachusetts male aging study. The Aging Male, 3, 155–161.

    Article  Google Scholar 

  7. Snyder, P. J. (2008). Might testosterone actually reduce mortality? The Journal of Clinical Endocrinology & Metabolism, 93, 32–33.

    Article  CAS  Google Scholar 

  8. Kumar, P., Kumar, N., Thakur, D. S., & Patidar, A. (2010). Male hypogonadism: Symptoms and treatment. Journal of Advanced Pharmaceutical Technology & Research, 1, 297–301.

    Article  Google Scholar 

  9. Thirumalai, A., Berkseth, K. E., & Amory, J. K. (2017). Treatment of hypogonadism: Current and future therapies. F1000Res, 6, 68. https://doi.org/10.12688/f1000research.10102.1.

  10. Cunningham, G. R. (2006). Testosterone replacement therapy for late-onset hypogonadism. Nature Clinical Practice. Urology, 3, 260–267.

    Article  CAS  PubMed  Google Scholar 

  11. Nieschlag, E., Swerdloff, R., Behre, H. M., Gooren, L. J., Kaufman, J. M., Legros, J. J., Lunenfeld, B., Morley, J. E., Schulman, C., Wang, C., Weidner, W., & Wu, F. C. W. (2005). Investigation, treatment and monitoring of late-onset hypogonadism in males. The Aging Male, 8, 56–58.

    Article  CAS  PubMed  Google Scholar 

  12. Salonia, A., Rastrelli, G., Hackett, G., Seminara, S. B., Huhtaniemi, I. T., Rey, R. A., Hellstrom, W. J. G., Palmert, M. R., Corona, G., Dohle, G. R., Khera, M., Chan, Y. M., & Maggi, M. (2019). Paediatric and adult-onset male hypogonadism. Nature Reviews. Disease Primers, 5, 38.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shehzad, B. (2014). Male hypogonadism. Lancet, 383, 1250–1263.

    Article  CAS  Google Scholar 

  14. Diver, M. J., Imtiaz, K. E., Ahmad, A. M., Vora, J. P., & Fraser, W. D. (2003). Diurnal rhythms of serum total, free and bioavailable testosterone and of SHBG in middle-aged men compared with those in young men. Clinical Endocrinology, 58, 710–717.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, M., Wang, J., Deng, C., Jiang, M. H., Feng, X., Xia, K., Li, W., Lai, X., Xiao, H., Ge, R. S., Gao, Y., & Xiang, A. P. (2017). Transplanted human p75-positive stem Leydig cells replace disrupted Leydig cells for testosterone production. Cell Death & Disease, 8, e3123.

    Article  CAS  Google Scholar 

  16. Zang, Z. J., Wang, J., Chen, Z., Zhang, Y., Gao, Y., Su, Z., Tuo, Y., Liao, Y., Zhang, M., Yuan, Q., Deng, C., Jiang, M. H., & Xiang, A. P. (2017). Transplantation of CD51(+) stem Leydig cells: A new strategy for the treatment of testosterone deficiency. Stem Cells, 35, 1222–1232.

    Article  CAS  PubMed  Google Scholar 

  17. Martin, L. J. (2016). Cell interactions and genetic regulation that contribute to testicular Leydig cell development and differentiation. Molecular Reproduction and Development, 83, 470–487.

    Article  CAS  PubMed  Google Scholar 

  18. Li, X., Wang, Z., Jiang, Z., Guo, J., Zhang, Y., Li, C., Chung, J., Folmer, J., Liu, J., Lian, Q., Ge, R., Zirkin, B. R., & Chen, H. (2016). Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes. Proceedings of the National Academy of Sciences of the United States of America, 113, 2666–2671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leydig, F. (1850). Zur Anatomie der männlichen Geschlechtsorgane und Analdrüsen der Säugethiere. Zeitschrift für Wissenschaftliche Zoologie, 2, 1–57.

    Google Scholar 

  20. Teerds, K. J., & Huhtaniemi, I. T. (2015). Morphological and functional maturation of Leydig cells: From rodent models to primates. Human Reproduction Update, 21, 310–328.

    Article  CAS  PubMed  Google Scholar 

  21. Ge, R.-S., Dong, Q., Sottas, C. M., Papadopoulos, V., Zirkin, B. R., & Hardy, M. P. (2006). In search of rat stem Leydig cells: Identification, isolation, and lineage-specific development. Proceedings of the National Academy of Sciences of the United States of America, 103, 2719–2724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leping, Y., Li, X., Li, L., Chen, H., & Ge, R.-S. (2017). Insights into the development of the adult Leydig cell lineage from stem Leydig cells. Frontiers in Physiology, 28(8), 430. https://doi.org/10.3389/fphys.2017.00430.

    Article  Google Scholar 

  23. Odeh, H. M., Kleinguetl, C., Ge, R., Zirkin, B. R., & Chen, H. (2014). Regulation of the proliferation and differentiation of Leydig stem cells in the adult testis. Biology of Reproduction, 90, 123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kilcoyne, K. R., Smith, L. B., Atanassova, N., Macpherson, S., McKinnell, C., van den Driesche, S., Jobling, M. S., Chambers, T. J., De Gendt, K., Verhoeven, G., O'Hara, L., Platts, S., Renato de Franca, L., Lara, N. L., Anderson, R. A., & Sharpe, R. M. (2014). Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proc Natl Acad Sci USA, 111, E1924–E1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liji, S. L. Z., Wayne Bardin, C., & Hardy, M. (1995). Quantitative analysis of androgen receptor messenger ribonucleic acid in developing Leydig cells and Sertoli cells by in situ hybridization. Endocrinology, 136, 3856–3862.

    Article  Google Scholar 

  26. Lixin, H. S., & Matthew, P. (1992). Developmental changes in levels of luteinizing hormone receptor and androgen receptor in rat Leydig cells. Endocrinology, 131, 1107–1114.

    Article  Google Scholar 

  27. Hu, G. X., Lin, H., Chen, G. R., Chen, B. B., Lian, Q. Q., Hardy, D. O., Zirkin, B. R., & Ge, R. S. (2010). Deletion of the Igf1 gene: Suppressive effects on adult Leydig cell development. Journal of Andrology, 31, 379–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shan, L.-X., Phillips, D. M., Bardin, C. W., & Hardy, M. P. (1993). Differential regulation of steroidogenic enzymes during differentiation optimizes testosterone production by adult rat Leydig cells. Endocrinology, 133, 2277–2283.

    Article  CAS  PubMed  Google Scholar 

  29. Li, X. S., & Hardy, M. P. (1992). Developmental changes in levels of luteinizing hormone receptor and androgen receptor in rat Leydig cells. Endocrinology, 131, 1107–1114.

    Article  Google Scholar 

  30. Ge, R., & Hardy, M. P. (1998). Variation in the end products of androgen biosynthesis and metabolism during postnatal differentiation of rat Leydig cells. Endocrinology, 139, 3787–3795.

    Article  CAS  PubMed  Google Scholar 

  31. Ge, R., & Hardy, M. P. (2007). Regulation of leydig cells during pubertal development. In A. H. Payne & M. P. Hardy (Eds.), The Leydig Cell in Health and Disease (pp. 55–70). Contemporary Endocrinology: Humana Press. https://doi.org/10.1007/978-1-59745-453-7_4.

  32. Hardy, M. P., Zirkin, B. R., & Ewing, L. L. (1989). Kinetic studies on the development of the adult population of Leydig cells in testes of the pubertal rat. Endocrinology, 124, 762–770.

    Article  CAS  PubMed  Google Scholar 

  33. Viger, R. S., & Robaire, B. (1995). Steady state steroid 5 a-reductase messenger ribonucleic acid levels and immunocytochemical localization of the type 1 protein in the rat testis during postnatal development. Endocrinology, 136, 5409–5415.

    Article  CAS  PubMed  Google Scholar 

  34. Hu, G. X., Lian, Q. Q., Chen, B. B., Prasad, P. V., Kumar, N., Zheng, Z. Q., & Ge, R. S. (2010). 7alpha-hydroxytestosterone affects 1 beta-hydroxysteroid dehydrogenase 1 direction in rat Leydig cells. Endocrinology, 151, 748–754.

    Article  CAS  PubMed  Google Scholar 

  35. Chen, H., Wang, Y., Ge, R., & Zirkin, B. R. (2017). Leydig cell stem cells: Identification, proliferation and differentiation. Molecular and Cellular Endocrinology, 445, 65–73.

    Article  CAS  PubMed  Google Scholar 

  36. Ilpo, H., & Pelliniemi, L. J. (1992). Fetal Leydig cells: cellular origin,morphology, life span, and special functional features. Proc. Soc. Exp. Biol.Med, 201, 125–140.

    Article  Google Scholar 

  37. Liu, C., Rodriguez, K., & Yao, H. H. (2016). Mapping lineage progression of somatic progenitor cells in the mouse fetal testis. Development, 143, 3700–3710.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shima, Y., Miyabayashi, K., Haraguchi, S., Arakawa, T., Otake, H., Baba, T., Matsuzaki, S., Shishido, Y., Akiyama, H., Tachibana, T., Tsutsui, K., & Morohashi, K. (2013). Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Molecular Endocrinology, 27, 63–73.

    Article  CAS  PubMed  Google Scholar 

  39. Zirkin, B. R., & Papadopoulos, V. (2018). Leydig cells: Formation, function, and regulation. Biology of Reproduction, 99, 101–111.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lo, K. C., Lei, Z. M., Rao, C. V., & Lamb, D. J. (2003). De novo testosterone production in a luteinizing hormone receptor knockout mouse after transplantation of Leydig stem cells. Fertility and Sterility, 80, 4.

    Article  Google Scholar 

  41. Jiang, M. H., Cai, B., Tuo, Y., Wang, J., Zang, Z. J., Tu, X., Gao, Y., Su, Z., Li, W., Li, G., Zhang, M., Jiao, J., Wan, Z., Deng, C., Lahn, B. T., & Xiang, A. P. (2014). Characterization of nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. Cell Research, 24, 1466–1485.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xia, K., Chen, H., Wang, J., Feng, X., Gao, Y., Wang, Y., Deng, R., Wu, C., Luo, P., Zhang, M., Wang, C., Zhang, Y., Zhang, Y., Liu, G., Tu, X., Sun, X., Li, W., Ke, Q., Deng, C., & Xiang, A. P. (2020). Restorative functions of autologous stem Leydig cell transplantation in a testosterone-deficient non-human primate model. Theranostics, 10, 8705–8720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eliveld, J., van Daalen, S. K. M., de Winter-Korver, C. M., van der Veen, F., Repping, S., Teerds, K., & van Pelt, A. M. M. (2020). A comparative analysis of human adult testicular cells expressing stem Leydig cell markers in the interstitium, vasculature, and peritubular layer. Andrology, 8, 1265–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ni, C., Fang, Y., Chen, X., Wu, K., Li, H., Wang, Y., Zhenkun, L., Lian, Q., & Ge, R. S. (2019). Stem Leydig cell regeneration in the adult rat testis is inhibited after a short-term triphenyltin exposure. Toxicology Letters, 306, 80–89.

    Article  CAS  PubMed  Google Scholar 

  45. Duan, Y., Wang, Y., Li, X., Mo, J., Guo, X., Li, C., Tu, M., Ge, F., Zheng, W., Lin, J., & Ge, R. S. (2019). Fibroblast growth factor 16 stimulates proliferation but blocks differentiation of rat stem Leydig cells during regeneration. Journal of Cellular and Molecular Medicine, 23, 2632–2644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Song, T., Wang, Y., Li, H., Chen, L., Liu, J., Chen, X., Li, X., Li, X., Li, L., Lian, Q., & Ge, R. S. (2017). Parathyroid hormone-related protein promotes rat stem Leydig cell differentiation. Frontiers in Physiology, 8, 911.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang, Y., Xie, L., Tian, E., Li, X., Wen, Z., Li, L., Chen, L., Zhong, Y., & Ge, R. S. (2019). Oncostatin M inhibits differentiation of rat stem Leydig cells in vivo and in vitro. Journal of Cellular and Molecular Medicine, 23, 426–438.

    Article  CAS  PubMed  Google Scholar 

  48. Wang, Y., Chen, L., Xie, L., Li, L., Li, X., Li, H., Liu, J., Chen, X., Mao, B., Song, T., Lian, Q., & Ge, R. S. (2018). Interleukin 6 inhibits the differentiation of rat stem Leydig cells. Molecular and Cellular Endocrinology, 472, 26–39.

    Article  CAS  PubMed  Google Scholar 

  49. Wu, X., Guo, X., Wang, H., Zhou, S., Li, L., Chen, X., Wang, G., Liu, J., Ge, H. S., & Ge, R. S. (2017). A brief exposure to cadmium impairs Leydig cell regeneration in the adult rat testis. Scientific Reports, 7, 6337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Lu, H., Zhang, H., Gao, J., Li, Z., Bao, S., Chen, X., Wang, Y., Ge, R., & Ye, L. (2019). Effects of perfluorooctanoic acid on stem Leydig cell functions in the rat. Environmental Pollution, 250, 206–215.

    Article  CAS  PubMed  Google Scholar 

  51. Di Nisio, A., Sabovic, I., Valente, U., Tescari, S., Rocca, M. S., Guidolin, D., Dall'Acqua, S., Acquasaliente, L., Pozzi, N., Plebani, M., Garolla, A., & Foresta, C. (2019). Endocrine disruption of androgenic activity by Perfluoroalkyl substances: Clinical and experimental evidence. The Journal of Clinical Endocrinology and Metabolism, 104, 1259–1271.

    Article  PubMed  Google Scholar 

  52. Grote, K., Stahlschmidt, B., Talsness, C. E., Gericke, C., Appel, K. E., & Chahoud, I. (2004). Effects of organotin compounds on pubertal male rats. Toxicology, 202, 145–158.

    Article  CAS  PubMed  Google Scholar 

  53. Li, L., Xie, L., Ma, L., Chen, Y., Chen, X., Ge, F., Huang, T., Chen, L., Hong, T., Chen, X., Zhu, Q., Li, X., & Ge, R.-S. (2018). Triphenyltin chloride delays Leydig cell maturation during puberty in rats. Frontiers in Pharmacology, 9, 833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wetherill, Y. B., Akingbemi, B. T., Kanno, J., McLachlan, J. A., Nadal, A., Sonnenschein, C., Watson, C. S., Zoeller, R. T., & Belcher, S. M. (2007). In vitro molecular mechanisms of bisphenol a action. Reproductive Toxicology, 24, 178–198.

    Article  CAS  PubMed  Google Scholar 

  55. Ma, S., Shi, W., Wang, X., Song, P., & Zhong, X. (2017). Bisphenol a exposure during pregnancy alters the mortality and levels of reproductive hormones and genes in offspring mice. BioMed Research International, 2017, 3585809.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lakind, J. S., & Naiman, D. Q. (2008). Bisphenol a (BPA) daily intakes in the United States: Estimates from the 2003-2004 NHANES urinary BPA data. Journal of Exposure Science & Environmental Epidemiology, 18, 608–615.

    Article  CAS  Google Scholar 

  57. Chen, L., Zhao, Y., Li, L., Xie, L., Chen, X., Liu, J., Li, X., Jin, L., Li, X., & Ge, R. S. (2018). Bisphenol a stimulates differentiation of rat stem Leydig cells in vivo and in vitro. Molecular and Cellular Endocrinology, 474, 158–167.

    Article  CAS  PubMed  Google Scholar 

  58. Guo, J., Li, X. W., Liang, Y., Ge, Y., Chen, X., Lian, Q. Q., & Ge, R. S. (2013). The increased number of Leydig cells by di(2-ethylhexyl) phthalate comes from the differentiation of stem cells into Leydig cell lineage in the adult rat testis. Toxicology, 306, 9–15.

    Article  CAS  PubMed  Google Scholar 

  59. Shawky, S., & Emons, H. (1998). Distribution pattern of organotin compounds at different trophic levels of aquatic ecosystems. Chemosphere, 36, 523–535.

    Article  CAS  PubMed  Google Scholar 

  60. Mitra, S., Srivastava, A., Khanna, S., & Khandelwal, S. (2014). Consequences of tributyltin chloride induced stress in Leydig cells: An ex-vivo approach. Environmental Toxicology and Pharmacology, 37, 850–860.

    Article  CAS  PubMed  Google Scholar 

  61. Aluoch, A. O., Odman-Ghazi, S. O., & Whalen, M. M. (2007). Pattern of MAP kinases p44/42 and JNK activation by non-lethal doses of tributyltin in human natural killer cells. Archives of Toxicology, 81, 271–277.

    Article  CAS  PubMed  Google Scholar 

  62. Karl, F. (1996). Ecotoxicology of organotin compounds. Critical Reviews in Toxicology, 26, 1–117.

    Google Scholar 

  63. Wu, X., Liu, J., Duan, Y., Gao, S., Lu, Y., Li, X., Zhu, Q., Chen, X., Lin, J., Ye, L., & Ge, R. S. (2017). A short-term exposure to Tributyltin blocks Leydig cell regeneration in the adult rat testis. Frontiers in Pharmacology, 8, 704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Meffre, D., Grenier, J., Bernard, S., Courtin, F., Dudev, T., Shackleford, G., Jafarian-Tehrani, M., & Massaad, C. (2014). Wnt and lithium: A common destiny in the therapy of nervous system pathologies? Cellular and Molecular Life Sciences, 71, 1123–1148.

    Article  CAS  PubMed  Google Scholar 

  65. Zinedine, A., Soriano, J. M., Molto, J. C., & Manes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food and Chemical Toxicology, 45, 1–18.

    Article  CAS  PubMed  Google Scholar 

  66. Pan, P., Ma, F., Wu, K., Yu, Y., Yang, L., Li, Z., Chen, X., Huang, T., Wang, Y., & Ge, R.-s. (2020). Maternal exposure to zearalenone in masculinization window affects the fetal Leydig cell development in rat male fetus. Environmental Pollution, 263, 114357.

    Article  CAS  PubMed  Google Scholar 

  67. Nies, V. J., Sancar, G., Liu, W., van Zutphen, T., Struik, D., Yu, R. T., Atkins, A. R., Evans, R. M., Jonker, J. W., & Downes, M. R. (2015). Fibroblast growth factor signaling in metabolic regulation. Front Endocrinol (Lausanne), 6, 193.

    Google Scholar 

  68. Shan, Z., Alvarez-Sola, G., Uriarte, I., Arechederra, M., Fernandez-Barrena, M. G., Berasain, C., Ju, C., & Avila, M. A. (2018). Fibroblast growth factors 19 and 21 in acute liver damage. Ann Transl Med, 6, 257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ryan, D., Kathira, T. K. M., Rajalingama, D., & Suresh Kumara, T. K. (2012). Molecular Basis for the Kallmann Syndrome-Linked Fibroblast Growth Factor Receptor Mutation. Biochemical and Biophysical Research Communications, 425, 673–678.

    Article  CAS  Google Scholar 

  70. Chen, L., Li, X., Wang, Y., Song, T., Li, H., Xie, L., Li, L., Chen, X., Ma, L., Chen, Y., Lv, Y., Li, X., & Ge, R. S. (2019). Fibroblast growth factor 1 promotes rat stem Leydig cell development. Front Endocrinol (Lausanne), 10, 118.

    Article  Google Scholar 

  71. Franco, B., Guioli, S., Pragliola, A., Incerti, B., Bardoni, B., Tonlorenzi, R., Carrozzo, R., Maestrini, E., Pieretti, M., Taillon-Miller, P., Brown, C. J., Willard, H. F., Lawrence, C., Graziella Persico, M., Camerino, G., & Ballabio, A. (1991). A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature, 353, 529–536.

    Article  CAS  PubMed  Google Scholar 

  72. Hu, Y., & Bouloux, P. M. (2010). Novel insights in FGFR1 regulation: Lessons from Kallmann syndrome. Trends in Endocrinology and Metabolism, 21, 385–393.

    Article  CAS  PubMed  Google Scholar 

  73. Kaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology, 10, 381–391.

    Article  CAS  PubMed  Google Scholar 

  74. Morgentaler, A. (2018). Nerve growth factor as a new treatment for testosterone deficiency? EBioMedicine, 36, 10–11.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhang, L., Wang, H., Yang, Y., Liu, H., Zhang, Q., Xiang, Q., Ge, R., Su, Z., & Huang, Y. (2013). NGF induces adult stem Leydig cells to proliferate and differentiate during Leydig cell regeneration. Biochemical and Biophysical Research Communications, 436, 300–305.

    Article  CAS  PubMed  Google Scholar 

  76. Muller, D., Davidoff, M. S., Bargheer, O., Paust, H. J., Pusch, W., Koeva, Y., Jezek, D., Holstein, A. F., & Middendorff, R. (2006). The expression of neurotrophins and their receptors in the prenatal and adult human testis: Evidence for functions in Leydig cells. Histochemistry and Cell Biology, 126, 199–211.

    Article  PubMed  CAS  Google Scholar 

  77. Skinner, M. K., & Moses, H. L. (1989). Transforming growth factor beta gene expression and action in the seminiferous tubule: Peritubular cell-Sertoli cell interactions. Molecular Endocrinology, 3, 625–634.

    Article  CAS  PubMed  Google Scholar 

  78. Guan, X., Chen, F., Chen, P., Zhao, X., Mei, H., Liu, J., Lian, Q., Zirkin, B. R., & Chen, H. (2019). Effects of spermatogenic cycle on stem Leydig cell proliferation and differentiation. Molecular and Cellular Endocrinology, 481, 35–43.

    Article  CAS  PubMed  Google Scholar 

  79. Li, L., Wang, Y., Li, X., Liu, S., Wang, G., Lin, H., Zhu, Q., Guo, J., Chen, H., Ge, H. S., & Ge, R. S. (2016). Regulation of development of rat stem and progenitor Leydig cells by activin. Andrology, 5, 125–132.

    Article  PubMed  CAS  Google Scholar 

  80. Jennifer, B., Tilmann, C., & Capel, B. (2003). PDGFaa-brennan2003.Pdgfr- α mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes and Development, 17, 800–810.

    Article  CAS  Google Scholar 

  81. Meroni, S. B., Galardo, M. N., Rindone, G., Gorga, A., Riera, M. F., & Cigorraga, S. B. (2019). Molecular mechanisms and signaling pathways involved in Sertoli cell proliferation. Front Endocrinol (Lausanne), 10, 224.

    Article  Google Scholar 

  82. Dinarello, C. A. (2007). Historical insights into cytokines. European Journal of Immunology, 37, 34–45.

    Article  CAS  Google Scholar 

  83. Al Snih, J. B. S., Raji, M. A., Urban, R. J., Sharma, G., Sheffield-Moore, M., Lopez, D. S., Baillargeon, G., & Kuo, Y.-F. (2017). Hypogonadism and the risk of rheumatic autoimmune disease. Clinical Rheumatology, 35, 2983–2987.

    Google Scholar 

  84. Rothschild, G., Sottas, C. M., Kissel, H., Agosti, V., Manova, K., Hardy, M. P., & Besmer, P. (2003). A role for kit receptor signaling in Leydig cell steroidogenesis. Biology of Reproduction, 69, 925–932.

    Article  CAS  PubMed  Google Scholar 

  85. Liu, S., Chen, X., Wang, Y., Li, L., Wang, G., Li, X., Chen, H., Guo, J., Lin, H., Lian, Q. Q., & Ge, R. S. (2017). A role of KIT receptor signaling for proliferation and differentiation of rat stem Leydig cells in vitro. Molecular and Cellular Endocrinology, 444, 1–8.

    Article  CAS  PubMed  Google Scholar 

  86. Clark Ann, M., Garland, K. K., & Russell, L. D. (2000). Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and Normal development of Peritubular cells and seminiferous tubules. Biology of Reproduction, 63, 1825–1838.

    Article  Google Scholar 

  87. Lucas, T. F., Nascimento, A. R., Pisolato, R., Pimenta, M. T., Lazari, M. F., & Porto, C. S. (2014). Receptors and signaling pathways involved in proliferation and differentiation of Sertoli cells. Spermatogenesis, 4, e28138.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mohammed, A. G., Mansour, A. A., & Ahmed, J. H. (2020). Effect of exogenous glucocorticoids on male hypogonadism. Biomed Rep, 13, 12.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, J., Hu, G., Huang, B., Zhuo, D., Xu, Y., Li, H., Zhan, X., Ge, R. S., & Xu, Y. (2019). Dexamethasone suppresses the differentiation of stem Leydig cells in rats in vitro. BMC Pharmacology and Toxicology, 20, 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zhang, J., Huang, B., Hu, G., Zhan, X., Xie, T., Li, S., Zhang, X., Li, H., Ge, R. S., & Xu, Y. (2018). Aldosterone blocks rat stem Leydig cell development in vitro. Front Endocrinol (Lausanne), 9, 4.

    Article  Google Scholar 

  91. Mannstadt, M., Jüppner, H., & Gardella, T. J. (1999). Receptors for PTH and PTHrP: their biological importance and functional properties. The American Journal of Physiology, 277, F665–F675.

    CAS  PubMed  Google Scholar 

  92. Ferrandon, O. M. S., Vilardaga, J. P., Bouxsein, M. L., Potts Jr., J. T., & Gardella, T. J. (2008). Rolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. Proceedings of the National Academy of Sciences of the United States of America, 105, 16525–16530.

    Article  PubMed  PubMed Central  Google Scholar 

  93. O'Hara, L., McInnes, K., Simitsidellis, I., Morgan, S., Atanassova, N., Slowikowska-Hilczer, J., Kula, K., Szarras-Czapnik, M., Milne, L., Mitchell, R. T., & Smith, L. B. (2014). Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. The FASEB Journal, 29, 894–910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Murphy, L., Jeffcoate, I. A., & O’Shaughnessy, P. J. (1994). Abnormal Leydig cell development at puberty in the androgen-resistant Tfm mouse. Endocrinology, 135, 1372–1377.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Guangdong Basic and Applied Basic Research Foundation (2019A1515012098).

Author information

Authors and Affiliations

Authors

Contributions

Zhuojie Liu wrote the review, and Yonghui Liu prepared the figure and tables, Shengyu Huang revised the figure and language, Zhi-Jun Zang reviewed the manuscript.

Corresponding author

Correspondence to Zhi-Jun Zang.

Ethics declarations

Conflict of Interest

All the authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Zj., Liu, Yh., Huang, Sy. et al. Insights into the Regulation on Proliferation and Differentiation of Stem Leydig Cells. Stem Cell Rev and Rep 17, 1521–1533 (2021). https://doi.org/10.1007/s12015-021-10133-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10133-x

Keywords

Navigation