Skip to main content

Advertisement

Log in

Enhancing the Therapeutic Potential of Mesenchymal Stem Cells with the CRISPR-Cas System

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs), also known as multipotent mesenchymal stromal stem cells, are found in the perivascular space of several tissues. These cells have been subject of intense research in the last decade due to their low teratogenicity, as well as their ability to differentiate into mature cells and to secrete immunomodulatory and trophic factors. However, they usually promote only a modest benefit when transplanted in experimental disease models, one of the limitations for their clinical application. The CRISPR-Cas system, in turn, is highlighted as a simple and effective tool for genetic engineering. This system was tested in clinical trials over a relatively short period of time after establishing its applicability to the edition of the mammalian cell genome. Similar to the research evolution in MSCs, the CRISPR-Cas system demonstrated inconsistencies that limited its clinical application. In this review, we outline the evolution of MSC research and its applicability, and the progress of the CRISPR-Cas system from its discovery to the most recent clinical trials. We also propose perspectives on how the CRISPR-Cas system may improve the therapeutic potential of MSCs, making it more beneficial and long lasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. da Silva Meirelles, L., Caplan, A. I., & Nardi, N. B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26(9), 2287–2299.

    Article  PubMed  Google Scholar 

  2. Caplan, A. I. (2017). Mesenchymal stem cells: Time to change the name. Stem Cells Translational Medicine., 6(6), 1445–1451.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rose, R. A., Jiang, H., Wang, X., Helke, S., Tsoporis, J. N., Gong, N., et al. (2008). Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells, 26(11), 2884–2892.

    Article  CAS  PubMed  Google Scholar 

  4. Pijnappels, D. A., Schalij, M. J., Ramkisoensing, A. A., van Tuyn, J., de Vries, A. A., van der Laarse, A., et al. (2008). Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circulation Research., 103(2), 167–176.

    Article  CAS  PubMed  Google Scholar 

  5. Mendivil-Perez, M., Velez-Pardo, C., & Jimenez-Del-Rio, M. (2019). Direct transdifferentiation of human Wharton's jelly mesenchymal stromal cells into cholinergic-like neurons. Journal of Neuroscience Methods., 312, 126–138.

    Article  CAS  PubMed  Google Scholar 

  6. Haragopal, H., Yu, D., Zeng, X., Kim, S. W., Han, I. B., Ropper, A. E., et al. (2015). Stemness enhancement of human neural stem cells following bone marrow MSC coculture. Cell Transplantation., 24(4), 645–659.

    Article  PubMed  Google Scholar 

  7. Mojica, F. J., Juez, G., & Rodriguez-Valera, F. (1993). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular Microbiology., 9(3), 613–621.

    Article  CAS  PubMed  Google Scholar 

  8. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science., 315(5819), 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  9. Brouns, S. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J., Snijders, A. P., et al. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science., 321(5891), 960–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barrangou, R., & Marraffini, L. A. (2014). CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Molecular Cell, 54(2), 234–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science., 346(6213), 1258096.

    Article  CAS  PubMed  Google Scholar 

  12. Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., et al. (2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature., 471(7340), 602–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pennisi, E. (2013). The CRISPR craze. Science., 341(6148), 833–836.

    Article  CAS  PubMed  Google Scholar 

  14. Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., et al. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology., 13(11), 722–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology., 151(Pt 8, 2551–2561.

    Article  CAS  PubMed  Google Scholar 

  16. Marraffini, L. A., & Sontheimer, E. J. (2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science., 322(5909), 1843–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lander, E. S. (2016). The heroes of CRISPR. Cell., 164(1–2), 18–28.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, K. Y., & Knoepfler, P. S. (2016). To CRISPR and beyond: The evolution of genome editing in stem cells. Regenerative Medicine., 11(8), 801–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho, S. W., Kim, S., Kim, J. M., & Kim, J. S. (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology., 31(3), 230–232.

    Article  CAS  PubMed  Google Scholar 

  20. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science., 339(6121), 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., et al. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology., 31(9), 822–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013). RNA-programmed genome editing in human cells. eLife., 2, e00471.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cong, L., & Zhang, F. (2015). Genome engineering using CRISPR-Cas9 system. Methods in Molecular Biology., 1239, 197–217.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, S., Kim, D., Cho, S. W., Kim, J., & Kim, J. S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 24(6), 1012–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology., 32(4), 347–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maeder, M. L., & Gersbach, C. A. (2016). Genome-editing Technologies for Gene and Cell Therapy. Molecular Therapy : the Journal of the American Society of Gene Therapy., 24(3), 430–446.

    Article  CAS  Google Scholar 

  27. Mollanoori, H., & Teimourian, S. (2018). Therapeutic applications of CRISPR/Cas9 system in gene therapy. Biotechnology Letters, 40(6), 907–914.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang, F., & Doudna, J. A. (2017). CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics, 46, 505–529.

    Article  CAS  PubMed  Google Scholar 

  29. Foss, D. V., Hochstrasser, M. L., & Wilson, R. C. (2019). Clinical applications of CRISPR-based genome editing and diagnostics. Transfusion., 59, 1389–1399.

    Article  PubMed  Google Scholar 

  30. Baylis, F., & McLeod, M. (2017). First-in-human phase 1 CRISPR gene editing Cancer trials: Are we ready? Current Gene Therapy., 17(4), 309–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Brokowski, C., & Adli, M. (2019). CRISPR ethics: Moral considerations for applications of a powerful tool. Journal of Molecular Biology., 431(1), 88–101.

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Lage, M., Puig-Serra, P., Menendez, P., Torres-Ruiz, R., & Rodriguez-Perales, S. (2018). CRISPR/Cas9 for Cancer therapy: Hopes and challenges. Biomedicines., 6(4).

  33. Soppe, J. A., & Lebbink, R. J. (2017). Antiviral Goes viral: Harnessing CRISPR/Cas9 to combat viruses in humans. Trends in Microbiology., 25(10), 833–850.

    Article  CAS  PubMed  Google Scholar 

  34. Xie, C., Zhang, Y. P., Song, L., Luo, J., Qi, W., Hu, J., et al. (2016). Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Research., 26(10), 1099–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Y., Yang, Y., Kang, X., Lin, B., Yu, Q., Song, B., et al. (2017). One-step Biallelic and Scarless correction of a beta-thalassemia mutation in patient-specific iPSCs without drug selection. Molecular Therapy Nucleic acids., 6, 57–67.

    Article  CAS  PubMed  Google Scholar 

  36. Park, C. Y., Kim, D. H., Son, J. S., Sung, J. J., Lee, J., Bae, S., et al. (2015). Functional correction of large factor VIII gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell, 17(2), 213–220.

    Article  CAS  PubMed  Google Scholar 

  37. Chang, C. W., Lai, Y. S., Westin, E., Khodadadi-Jamayran, A., Pawlik, K. M., Lamb, L. S., Jr., et al. (2015). Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Reports, 12(10), 1668–1677.

    Article  CAS  PubMed  Google Scholar 

  38. Pankowicz, F. P., Barzi, M., Legras, X., Hubert, L., Mi, T., Tomolonis, J. A., et al. (2016). Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nature Communications, 7, 12642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koo, T., Yoon, A. R., Cho, H. Y., Bae, S., Yun, C. O., & Kim, J. S. (2017). Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Research., 45(13), 7897–7908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, H. L., Fujimoto, N., Sasakawa, N., Shirai, S., Ohkame, T., Sakuma, T., et al. (2015). Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports., 4(1), 143–154.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, L., Yi, F., Fu, L., Yang, J., Wang, S., Wang, Z., et al. (2017). CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein & Cell., 8(5), 365–378.

    Article  CAS  Google Scholar 

  42. Firth, A. L., Menon, T., Parker, G. S., Qualls, S. J., Lewis, B. M., Ke, E., et al. (2015). Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Reports, 12(9), 1385–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hainzl, S., Peking, P., Kocher, T., Murauer, E. M., Larcher, F., Del Rio, M., et al. (2017). COL7A1 editing via CRISPR/Cas9 in recessive dystrophic epidermolysis bullosa. Molecular Therapy : the Journal of the American Society of Gene Therapy., 25(11), 2573–2584.

    Article  CAS  Google Scholar 

  44. Yu W, Mookherjee S, Chaitankar V, Hiriyanna S, Kim JW, Brooks M, et al. (2017) Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun [Internet], 8, 1–15. Available from: https://doi.org/10.1038/ncomms14716.

  45. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science., 284(5411), 143–147.

    Article  CAS  Google Scholar 

  46. Lu, D. F., Yao, Y., Su, Z. Z., Zeng, Z. H., Xing, X. W., He, Z. Y., et al. (2014). Downregulation of HDAC1 is involved in the cardiomyocyte differentiation from mesenchymal stem cells in a myocardial microenvironment. PLoS One, 9(4), e93222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khanjani, S., Khanmohammadi, M., Zarnani, A. H., Talebi, S., Edalatkhah, H., Eghtesad, S., et al. (2015). Efficient generation of functional hepatocyte-like cells from menstrual blood-derived stem cells. Journal of Tissue Engineering and Regenerative Medicine., 9(11), E124–E134.

    Article  CAS  PubMed  Google Scholar 

  48. Lee, K. D., Kuo, T. K., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., et al. (2004). In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology., 40(6), 1275–1284.

    Article  CAS  PubMed  Google Scholar 

  49. Zanini, C., Bruno, S., Mandili, G., Baci, D., Cerutti, F., Cenacchi, G., et al. (2011). Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype. PLoS One, 6(12), e28175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tohill, M., Mantovani, C., Wiberg, M., & Terenghi, G. (2004). Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neuroscience Letters, 362(3), 200–203.

    Article  CAS  PubMed  Google Scholar 

  51. Tropel, P., Platet, N., Platel, J. C., Noel, D., Albrieux, M., Benabid, A. L., et al. (2006). Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells, 24(12), 2868–2876.

    Article  CAS  PubMed  Google Scholar 

  52. Di Rocco, G., Iachininoto, M. G., Tritarelli, A., Straino, S., Zacheo, A., Germani, A., et al. (2006). Myogenic potential of adipose-tissue-derived cells. Journal of cell science., 119(Pt 14), 2945–2952.

    Article  CAS  PubMed  Google Scholar 

  53. Goudenege, S., Pisani, D. F., Wdziekonski, B., Di Santo, J. P., Bagnis, C., Dani, C., et al. (2009). Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Molecular therapy : the Journal of the American Society of Gene Therapy., 17(6), 1064–1072.

    Article  CAS  Google Scholar 

  54. Rajput, B. S., Chakrabarti, S. K., Dongare, V. S., Ramirez, C. M., & Deb, K. D. (2015). Human umbilical cord mesenchymal stem cells in the treatment of Duchenne muscular dystrophy: Safety and feasibility study in India. Journal of Stem Cells., 10(2), 141–156.

    CAS  PubMed  Google Scholar 

  55. Hattori, H., Sato, M., Masuoka, K., Ishihara, M., Kikuchi, T., Matsui, T., et al. (2004). Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells, Tissues, Organs., 178(1), 2–12.

    Article  PubMed  Google Scholar 

  56. Morrison, D. A., Kop, A. M., Nilasaroya, A., Sturm, M., Shaw, K., & Honeybul, S. (2018). Cranial reconstruction using allogeneic mesenchymal stromal cells: A phase 1 first-in-human trial. Journal of Tissue Engineering and Regenerative Medicine., 12(2), 341–348.

    Article  CAS  PubMed  Google Scholar 

  57. Thesleff, T., Lehtimaki, K., Niskakangas, T., Mannerstrom, B., Miettinen, S., Suuronen, R., et al. (2011). Cranioplasty with adipose-derived stem cells and biomaterial: A novel method for cranial reconstruction. Neurosurgery., 68(6), 1535–1540.

    Article  PubMed  Google Scholar 

  58. Bel, A., Planat-Bernard, V., Saito, A., Bonnevie, L., Bellamy, V., Sabbah, L., et al. (2010). Composite cell sheets: A further step toward safe and effective myocardial regeneration by cardiac progenitors derived from embryonic stem cells. Circulation., 122(11 Suppl), S118–S123.

    Article  PubMed  Google Scholar 

  59. Cai, M., Shen, R., Song, L., Lu, M., Wang, J., Zhao, S., et al. (2016). Bone marrow mesenchymal stem cells (BM-MSCs) improve heart function in swine myocardial infarction model through paracrine effects. Scientific Reports, 6, 28250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Valina, C., Pinkernell, K., Song, Y. H., Bai, X., Sadat, S., Campeau, R. J., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal., 28(21), 2667–2677.

    Article  PubMed  Google Scholar 

  61. Kholodenko, I. V., & Yarygin, K. N. (2017). Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases. BioMed Research International., 2017, 8910821.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liang, J., Zhang, H., Zhao, C., Wang, D., Ma, X., Zhao, S., et al. (2017). Effects of allogeneic mesenchymal stem cell transplantation in the treatment of liver cirrhosis caused by autoimmune diseases. International Journal of Rheumatic Diseases., 20(9), 1219–1226.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Y., Li, Y., Zhang, L., Li, J., & Zhu, C. (2018). Mesenchymal stem cells: Potential application for the treatment of hepatic cirrhosis. Stem Cell Research & Therapy., 9(1), 59.

    Article  CAS  Google Scholar 

  64. Kajiyama, H., Hamazaki, T. S., Tokuhara, M., Masui, S., Okabayashi, K., Ohnuma, K., et al. (2010). Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. The International Journal of Developmental Biology., 54(4), 699–705.

    Article  CAS  PubMed  Google Scholar 

  65. Lin, G., Wang, G., Liu, G., Yang, L. J., Chang, L. J., Lue, T. F., et al. (2009). Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells and Development., 18(10), 1399–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moreira, A., Kahlenberg, S., & Hornsby, P. (2017). Therapeutic potential of mesenchymal stem cells for diabetes. Journal of Molecular Endocrinology., 59(3), R109–RR20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Okuda, A., Horii-Hayashi, N., Sasagawa, T., Shimizu, T., Shigematsu, H., Iwata, E., et al. (2017). Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats. Journal of Neurosurgery SPINE., 26(3), 388–395.

    Article  PubMed  Google Scholar 

  68. Ryu, H. H., Lim, J. H., Byeon, Y. E., Park, J. R., Seo, M. S., Lee, Y. W., et al. (2009). Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. Journal of Veterinary Science., 10(4), 273–284.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shende, P., & Subedi, M. (2017). Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie., 91, 693–706.

    Article  CAS  Google Scholar 

  70. Ropper, A. E., Thakor, D. K., Han, I., Yu, D., Zeng, X., Anderson, J. E., et al. (2017). Defining recovery neurobiology of injured spinal cord by synthetic matrix-assisted hMSC implantation. Proceedings of the National Academy of Sciences of the United States of America., 114(5), E820–E8E9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Capitelli, C. S., Lopes, C. S., Alves, A. C., Barbiero, J., Oliveira, L. F., da Silva, V. J., et al. (2014). Opposite effects of bone marrow-derived cells transplantation in MPTP-rat model of Parkinson's disease: A comparison study of mononuclear and mesenchymal stem cells. International journal of medical sciences., 11(10), 1049–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jinfeng, L., Yunliang, W., Xinshan, L., Yutong, W., Shanshan, W., Peng, X., et al. (2016). Therapeutic effects of CUR-activated human umbilical cord mesenchymal stem cells on 1-Methyl-4-phenylpyridine-induced Parkinson's disease cell model. BioMed research international., 2016, 9140541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mendes Filho, D., Ribeiro, P. D. C., Oliveira, L. F., de Paula, D. R. M., Capuano, V., de Assuncao, T. S. F., et al. (2018). Therapy with mesenchymal stem cells in Parkinson disease: History and perspectives. The Neurologist., 23(4), 141–147.

    Article  PubMed  Google Scholar 

  74. Chulpanova, D. S., Kitaeva, K. V., Tazetdinova, L. G., James, V., Rizvanov, A. A., & Solovyeva, V. V. (2018). Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Frontiers in Pharmacology., 9, 259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Francois S, Usunier B, Forgue-Lafitte ME, L'Homme B, Benderitter M, Douay L, et al. (2018) Mesenchymal stem cell administration attenuates Colon Cancer progression by modulating the immune component within the colorectal tumor microenvironment. Stem cells translational medicine.

  76. Kalimuthu, S., Zhu, L., Oh, J. M., Lee, H. W., Gangadaran, P., Rajendran, R. L., et al. (2018). Regulated mesenchymal stem cells mediated Colon Cancer therapy assessed by reporter gene based optical imaging. International journal of molecular sciences., 19(4).

  77. Nakamura, K., Ito, Y., Kawano, Y., Kurozumi, K., Kobune, M., Tsuda, H., et al. (2004). Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Therapy., 11(14), 1155–1164.

    Article  CAS  PubMed  Google Scholar 

  78. Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology., 30(1), 42–48.

    Article  PubMed  Google Scholar 

  79. Ding, Q., Regan, S. N., Xia, Y., Oostrom, L. A., Cowan, C. A., & Musunuru, K. (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell, 12(4), 393–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ding, Y., Li, H., Chen, L. L., & Xie, K. (2016). Recent advances in genome editing using CRISPR/Cas9. Frontiers in Plant Science, 7, 703.

    PubMed  PubMed Central  Google Scholar 

  81. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-guided human genome engineering via Cas9. Science., 339(6121), 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Barrero, M. J., Boue, S., & Izpisua Belmonte, J. C. (2010). Epigenetic mechanisms that regulate cell identity. Cell Stem Cell, 7(5), 565–570.

    Article  CAS  PubMed  Google Scholar 

  83. Chen, Q., Shou, P., Zheng, C., Jiang, M., Cao, G., Yang, Q., et al. (2016). Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death and Differentiation., 23(7), 1128–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Almalki, S. G., & Agrawal, D. K. (2016). Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation; Research in Biological Diversity., 92(1–2), 41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Augello, A., & De Bari, C. (2010). The regulation of differentiation in mesenchymal stem cells. Human Gene Therapy., 21(10), 1226–1238.

    Article  CAS  PubMed  Google Scholar 

  86. Bionaz, M., Monaco, E., & Wheeler, M. B. (2015). Transcription adaptation during in vitro Adipogenesis and osteogenesis of porcine mesenchymal stem cells: Dynamics of pathways, biological processes, up-stream regulators, and gene networks. PLoS One, 10(9), e0137644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kang, H., Minder, P., Park, M. A., Mesquitta, W. T., Torbett, B. E., & Slukvin, I. I. (2015). CCR5 disruption in induced pluripotent stem cells using CRISPR/Cas9 provides selective resistance of immune cells to CCR5-tropic HIV-1 virus. Molecular Therapy Nucleic Acids., 4, e268.

    Article  CAS  PubMed  Google Scholar 

  88. Lai, F. P., Lau, S. T., Wong, J. K., Gui, H., Wang, R. X., Zhou, T., et al. (2017). Correction of Hirschsprung-associated mutations in human induced pluripotent stem cells via clustered regularly interspaced short palindromic repeats/Cas9, restores neural crest cell function. Gastroenterology., 153(1), 139–53 e8.

    Article  CAS  PubMed  Google Scholar 

  89. Song, B., Fan, Y., He, W., Zhu, D., Niu, X., Wang, D., et al. (2015). Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells and Development., 24(9), 1053–1065.

    Article  CAS  PubMed  Google Scholar 

  90. Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98(5), 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  91. Caplan, A. I., & Sorrell, J. M. (2015). The MSC curtain that stops the immune system. Immunology Letters., 168(2), 136–139.

    Article  CAS  PubMed  Google Scholar 

  92. Yao, Y., Huang, J., Geng, Y., Qian, H., Wang, F., Liu, X., et al. (2015). Paracrine action of mesenchymal stem cells revealed by single cell gene profiling in infarcted murine hearts. PLoS One, 10(6), e0129164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu, C. C., Liu, F. L., Sytwu, H. K., Tsai, C. Y., & Chang, D. M. (2016). CD146+ mesenchymal stem cells display greater therapeutic potential than CD146- cells for treating collagen-induced arthritis in mice. Stem Cell Research & Therapy., 7, 23.

    Article  CAS  Google Scholar 

  94. Butler, J., Epstein, S. E., Greene, S. J., Quyyumi, A. A., Sikora, S., Kim, R. J., et al. (2017). Intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: Safety and efficacy results of a phase II-A randomized trial. Circulation Research., 120(2), 332–340.

    Article  CAS  PubMed  Google Scholar 

  95. Caplan, A. I., & Correa, D. (2011). The MSC: An injury drugstore. Cell Stem Cell, 9(1), 11–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ye, X., Hu, J., & Cui, G. (2016). Therapy effects of bone marrow stromal cells on ischemic stroke. Oxidative medicine and cellular longevity., 2016, 7682960.

    PubMed  PubMed Central  Google Scholar 

  97. Yan, T., Chopp, M., & Chen, J. (2015). Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neuroscience Bulletin., 31(6), 717–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Diez-Tejedor, E., Gutierrez-Fernandez, M., Martinez-Sanchez, P., Rodriguez-Frutos, B., Ruiz-Ares, G., Lara, M. L., et al. (2014). Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: A safety assessment: A phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. Journal of Stroke and Cerebrovascular Diseases : the Official Journal of National Stroke Association., 23(10), 2694–2700.

    Article  Google Scholar 

  99. Locatelli, F., Bersano, A., Ballabio, E., Lanfranconi, S., Papadimitriou, D., Strazzer, S., et al. (2009). Stem cell therapy in stroke. Cellular and Molecular Life Sciences : CMLS., 66(5), 757–772.

    Article  CAS  PubMed  Google Scholar 

  100. Zheng, H., Zhang, B., Chhatbar, P. Y., Dong, Y., Alawieh, A., Lowe, F., et al. (2018). Mesenchymal stem cell therapy in stroke: A systematic review of literature in pre-clinical and clinical research. Cell Transplantation., 27(12), 1723–1730.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V., & Ferrara, N. (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science., 246(4935), 1306–1309.

    Article  CAS  PubMed  Google Scholar 

  102. Conti, E., Carrozza, C., Capoluongo, E., Volpe, M., Crea, F., Zuppi, C., et al. (2004). Insulin-like growth factor-1 as a vascular protective factor. Circulation., 110(15), 2260–2265.

    Article  PubMed  Google Scholar 

  103. Abe, K., Yamashita, T., Takizawa, S., Kuroda, S., Kinouchi, H., & Kawahara, N. (2012). Stem cell therapy for cerebral ischemia: From basic science to clinical applications. Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism., 32(7), 1317–1331.

    Article  CAS  Google Scholar 

  104. Zhong, C., Qin, Z., Zhong, C. J., Wang, Y., & Shen, X. Y. (2003). Neuroprotective effects of bone marrow stromal cells on rat organotypic hippocampal slice culture model of cerebral ischemia. Neuroscience Letters, 342(1–2), 93–96.

    Article  CAS  PubMed  Google Scholar 

  105. Chiba, Y., Kuroda, S., Osanai, T., Shichinohe, H., Houkin, K., & Iwasaki, Y. (2012). Impact of ageing on biological features of bone marrow stromal cells (BMSC) in cell transplantation therapy for CNS disorders: Functional enhancement by granulocyte-colony stimulating factor (G-CSF). Neuropathology : official journal of the Japanese Society of Neuropathology., 32(2), 139–148.

    Article  Google Scholar 

  106. Hokari, M., Kuroda, S., Chiba, Y., Maruichi, K., & Iwasaki, Y. (2009). Synergistic effects of granulocyte-colony stimulating factor on bone marrow stromal cell transplantation for mice cerebral infarct. Cytokine., 46(2), 260–266.

    Article  CAS  PubMed  Google Scholar 

  107. Kim, H. J., & Park, J. S. (2017). Usage of human mesenchymal stem cells in cell-based therapy: Advantages and disadvantages. Development & reproduction., 21(1), 1–10.

    Article  Google Scholar 

  108. Kim, N., & Cho, S. G. (2015). New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. International Journal of Stem Cells., 8(1), 54–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Conboy, I., Murthy, N., Etienne, J., & Robinson, Z. (2018). Making gene editing a therapeutic reality. F1000Research., 7.

  110. Wang, W., Huang, X., Lin, W., Qiu, Y., He, Y., Yu, J., et al. (2018). Hypoxic preconditioned bone mesenchymal stem cells ameliorate spinal cord injury in rats via improved survival and migration. International Journal of Molecular Medicine., 42(5), 2538–2550.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Council for Scientific and Technological Development (CNPq, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Cambraia Parreira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filho, D.M., de Carvalho Ribeiro, P., Oliveira, L.F. et al. Enhancing the Therapeutic Potential of Mesenchymal Stem Cells with the CRISPR-Cas System. Stem Cell Rev and Rep 15, 463–473 (2019). https://doi.org/10.1007/s12015-019-09897-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09897-0

Keywords

Navigation