Skip to main content

Advertisement

Log in

Identification of a Novel High Yielding Source of Multipotent Adult Human Neural Crest-Derived Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Due to their extraordinarily broad differentiation potential and persistence during adulthood, adult neural crest-derived stem cells (NCSCs) are highly promising candidates for clinical applications, particularly when facing the challenging treatment of neurodegenerative diseases or complex craniofacial injuries. Successful application of human NCSCs in regenerative medicine and pharmaceutical research mainly relies on the availability of sufficient amounts of tissue for cell isolation procedures. Facing this challenge, we here describe for the first time a novel population of NCSCs within the middle turbinate of the human nasal cavity. From a surgical point of view, high amounts of tissue are routinely and easily removed during nasal biopsies. Investigating the presence of putative stem cells in obtained middle turbinate tissue by immunohistochemistry, we observed Nestin+/p75NTR+/S100+/α smooth muscle actin (αSMA) cells, which we successfully isolated and cultivated in vitro. Cultivated middle turbinate stem cells (MTSCs) kept their expression of neural crest and stemness markers Nestin, p75 NTR and S100 and showed the capability of sphere formation and clonal growth, indicating their stem cell character. Application of directed in vitro differentiation assays resulted in successful differentiation of MTSCs into osteogenic and neuronal cell types. Regarding the high amount of tissue obtained during surgery as well as their broad differentiation capability, MTSCs seem to be a highly promising novel neural crest stem cell population for applications in cell replacement therapy and pharmacological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wagers, A. J., & Weissman, I. L. Plasticity of adult stem cells. Cell 2004;116:639 – 48.

  2. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4, 7–25.

    CAS  PubMed  Google Scholar 

  3. Collins, C. A., Olsen, I., Zammit, P. S., et al. (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122, 289–301.

    Article  CAS  PubMed  Google Scholar 

  4. Clewes, O., Narytnyk, A., Gillinder, K. R., Loughney, A. D., Murdoch, A. P., & Sieber-Blum, M. Human epidermal neural crest stem cells (hepi-ncsc)-characterization and directed differentiation into osteocytes and melanocytes. Stem Cell Reviews 2011.

  5. Dupin, E., & Sommer, L. (2012). Neural crest progenitors and stem cells: from early development to adulthood. Developmental Biology, 366, 83–95.

    Article  CAS  PubMed  Google Scholar 

  6. Murrell, W., Feron, F., Wetzig, A., et al. (2005). Multipotent stem cells from adult olfactory mucosa. Developmental Dynamics, 233, 496–515.

    Article  PubMed  Google Scholar 

  7. Müller, J., Ossig, C., Greiner, J. F., et al. (2015). Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in Parkinsonian rats. Stem Cells Translational Medicine, 4, 31–43.014.

    Article  PubMed  Google Scholar 

  8. His, W. (1868). Untersuchungen über die erste Anlage des Wirbeltierleibes. Die erste Entwicklung des Hühnchens im Ei. Leipzig: Vogel.

    Book  Google Scholar 

  9. Kaltschmidt, B., Kaltschmidt, C., & Widera, D. (2012). Adult craniofacial stem cells: sources and relation to the neural crest. Stem Cell Reviews, 8, 658 – 71.

    Article  PubMed  Google Scholar 

  10. Toma, J. G., Akhavan, M., Fernandes, K. J., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3, 778 – 84.

    Article  CAS  PubMed  Google Scholar 

  11. Hauser, S., Widera, D., Qunneis, F., et al. (2012). Isolation of novel multipotent neural crest-derived stem cells from adult human inferior turbinate. Stem Cells and Development, 21, 742 – 56.

    Article  CAS  PubMed  Google Scholar 

  12. Tabakow, P., Raisman, G., Fortuna, W., et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplantation 2014.

  13. Arthur, A., Rychkov, G., Shi, S., Koblar, S. A., & Gronthos, S. (2008). Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 26, 1787–1795.

    Article  CAS  PubMed  Google Scholar 

  14. Nakashima, T., Kimmelman, C. P., & Snow, J. B. Jr. (1984). Structure of human fetal and adult olfactory neuroepithelium. Archives of Otolaryngology, 110, 641–646.

    Article  CAS  PubMed  Google Scholar 

  15. Feron, F., Perry, C., Cochrane, J., et al. (2005). Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain, 128, 2951–2960.

    Article  CAS  PubMed  Google Scholar 

  16. Murrell, W., Wetzig, A., Donnellan, M., et al. (2008). Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells, 26, 2183–2192.

    Article  CAS  PubMed  Google Scholar 

  17. Mackay-Sim, A. (2005). Olfactory ensheathing cells and spinal cord repair. The Keio Journal of Medicine, 54, 8–14.

    Article  PubMed  Google Scholar 

  18. Greiner, J. F., Hauser, S., Widera, D., et al. (2011). Efficient animal-serum free 3D cultivation method for adult human neural crest-derived stem cell therapeutics. European Cell & Materials, 22, 403 – 19.

    Article  CAS  Google Scholar 

  19. Hofemeier, A. D., Hachmeister, H., Pilger, C., et al. (2016). Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells. Scientific Reports, 6, 26716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muller, J., Greiner, J. F., Zeuner, M., et al. (2016). 1,8-Cineole potentiates IRF3-mediated antiviral response in human stem cells and in an ex vivo model of rhinosinusitis. Clinical Science (London), 130, 1339–1352.

    Article  Google Scholar 

  21. Delorme, B., Nivet, E., Gaillard, J., et al. (2010). The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells and Development, 19, 853 – 66.

    Article  CAS  PubMed  Google Scholar 

  22. Damm, M., Vent, J., Schmidt, M., et al. (2002). Intranasal volume and olfactory function. Chemical Senses, 27, 831–839.

    Article  CAS  PubMed  Google Scholar 

  23. Barnett, S. C., Alexander, C. L., Iwashita, Y., et al. (2000). Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain, 123(Pt 8), 1581–1588.

    Article  PubMed  Google Scholar 

  24. Barraud, P., Seferiadis, A. A., Tyson, L. D., et al. (2010)Neural crest origin of olfactory ensheathing glia. Proceedings of the National Academy of Sciences of the United States of America ;107:21040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Viktorov, I. V., Savchenko, E. A., & Chekhonin, V. P. (2007). Spontaneous neural differentiation of stem cells in culture of human olfactory epithelium. Bulletin of Experimental Biology and Medicine, 144, 596–601.

    Article  CAS  PubMed  Google Scholar 

  26. Jahed, A., Rowland, J. W., McDonald, T., Boyd, J. G., Doucette, R., & Kawaja, M. D. (2007). Olfactory ensheathing cells express smooth muscle alpha-actin in vitro and in vivo. The Journal of Comparative Neurology, 503, 209 – 23.

    Article  CAS  PubMed  Google Scholar 

  27. Nivet, E., Vignes, M., Girard, S. D., et al. (2011). Engraftment of human nasal olfactory stem cells restores neuroplasticity in mice with hippocampal lesions. The Journal of Clinical Investigation, 121, 2808–2820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dayal, A., Rhee, J. S., & Garcia, G. J. (2016). Impact of middle versus inferior total turbinectomy on nasal aerodynamics. Otolaryngology–Head and Neck Surgery: Official Journal of American Academy of Otolaryngology-Head and. Neck Surgery, 155, 518 – 25.

    Article  Google Scholar 

  29. Scheithauer, M. O. (2010). Surgery of the turbinates and “empty nose” syndrome. GMS Current Topics Otorhinolaryngol Head Neck Surgery, 9, Doc03.

    Google Scholar 

  30. Modi, P., & Rahamim, J. (2005). Fibrin sealant treatment of splenic injuries during oesophagectomy. European Journal Cardiothoracic Surgery, 28, 167–168.

    Article  Google Scholar 

  31. Dahlstrom, K. K., Weis-Fogh, U. S., Medgyesi, S., Rostgaard, J., & Sorensen, H. The use of autologous fibrin adhesive in skin transplantation. Plastic and Reconstructive Surgery 1992;89:968 – 72; discussion 73 – 6.

  32. Gerard, C., Forest, M. A., Beauregard, G., Skuk, D., & Tremblay, J. P. (2012). Fibrin gel improves the survival of transplanted myoblasts. Cell Transplantation, 21(1), 127 – 37.

    Article  PubMed  Google Scholar 

  33. Ho, W., Tawil, B., Dunn, J. C., & Wu, B. M. (2006). The behavior of human mesenchymal stem cells in 3D fibrin clots: dependence on fibrinogen concentration and clot structure. Tissue Engineering, 12, 1587–1595.

    Article  CAS  PubMed  Google Scholar 

  34. Peterbauer-Scherb, A., Danzer, M., Gabriel, C., van Griensven, M., Redl, H., & Wolbank, S. (2012). In vitro adipogenesis of adipose-derived stem cells in 3D fibrin matrix of low component concentration. Journal Tissue of Engineering and Regenerative Medicine, 6, 434 – 42.

    Article  CAS  Google Scholar 

  35. Greiner, J. F., Grunwald, L. M., Muller, J., et al. (2014). Culture bag systems for clinical applications of adult human neural crest-derived stem cells. Stem Cell Research & Therapy, 5, 34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Sudhoff.

Ethics declarations

Conflicts of Interest

We have no conflicts of interest relevant to the content of this article. Human nasal middle turbinates and adipose tissue were obtained via routine nasal surgery after informed written consent according to local and international guidelines (Bezirksregierung Detmold/Münster). Isolation and further experimental procedures were ethically approved by the ethics commission of the Ärztekammer Westfalen-Lippe and the medical faculty of the Westfälische Wilhems-Universität (Münster, Germany).

Electronic supplementary material

Below is the link to the electronic supplementary material.

12015_2017_9797_MOESM1_ESM.jpg

Supplementary figure S1: Isolated hMSCs show characteristic morphology, expression profile and differentiation capability into mesodermal cell types. (A)Isolated MSCs show characteristic morphology. (B) RT-PCR and qPCR-analysis revealed the expression of MSC markers CD105, CD106, CD90, CD29, CD73 while lacking expression of non-MSC markers CD45 and CD13. (C) Expression of CD105 in isolated hMSCs was validated on protein level using flow cytometry. (D) hMSCs were able to differentiate into osteogenic cell types visualized by Alizarin red S-stained calcium deposition and adipogenic cells containing Oil red O-positive lipid droplets. (JPG 4956 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schürmann, M., Brotzmann, V., Bütow, M. et al. Identification of a Novel High Yielding Source of Multipotent Adult Human Neural Crest-Derived Stem Cells. Stem Cell Rev and Rep 14, 277–285 (2018). https://doi.org/10.1007/s12015-017-9797-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9797-2

Keywords

Navigation