Skip to main content

Advertisement

Log in

Fibroblast Growth Factor Type 1 (FGF1)-Overexpressed Adipose-Derived Mesenchaymal Stem Cells (AD-MSCFGF1) Induce Neuroprotection and Functional Recovery in a Rat Stroke Model

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stroke, as the second most common cause of death, imposes a great financial burden on both the individual and society. Mesenchymal stem cells from rodents have demonstrated efficacy in experimental animal models of stroke due to enhanced neurological recovery. Since FGF1 (fibroblast growth factor 1) displays neuroprotective properties, for the first time, we investigated the effect of acute intravenous administration of FGF1 gene transfected adipose-derived mesenchymal stem cell (AD-MSCFGF1) on transient experimental ischemic stroke in rats. Stroke induction was made by transient middle cerebral artery occlusion (tMCAO). 2 × 106 AD-MSCFGF1 was administrated intravenously 30 min after carotid reperfusion. The ability of technetium99m-hexamethyl propylene amine oxime (99mTc-HMPAO)-labeled AD-MSCFGF1 to enter into ischemic brain was evaluated 2 h post injection. 24 h post operation, the neurological recovery (rotarod and Roger’s tests), the infarct volume (2, 3, 5-triphenyltetrazolium chloride, TTC assay), apoptosis rate (TUNEL assay), and the expression of FGF1 protein (western blotting) in the ischemic hemisphere were assessed. The 99mTc-HMPAO-labeled AD-MSCFGF1 could enter into the ischemic brain. Ischemic hemisphere activity was significantly higher than that observed in the contralateral hemisphere (p = 0.002). The administration of AD-MSCFGF1 resulted in significant improvement of neurological function tests and increased density of FGF1 protein in the peri-infarct area, while the infarct volume and the apoptotic index were significantly decreased, in comparison to the other treated groups. In conclusion, acute intravenous administration of AD-MSCFGF1 can be a novel and promising candidate approach for the treatment of ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Donnan, G. A., Fisher, M., Macleod, M., & Davis, S. M. (2008). Stroke. Lancet, 371, 1612–1623.

    Article  CAS  PubMed  Google Scholar 

  2. Rehni, A. K., Singh, I., Singh, N., & Kumar, M. (2008). Stem cells: implications in experimental ischaemic stroke therapy. Stem Cell Reviews, 4, 227–233.

    Article  PubMed  Google Scholar 

  3. Kanyal, N. (2015). The science of ischemic stroke: pathophysiology & pharmacological treatment. International Journal of Pharma Research & Review, 4, 65–84.

    Google Scholar 

  4. Gutiérrez-Fernández, M., Otero-Ortega, L., Ramos-Cejudo, J., Rodríguez-Frutos, B., Fuentes, B., & Díez-Tejedor, E. (2015). Adipose tissue-derived mesenchymal stem cells as a strategy to improve recovery after stroke. Expert Opinion on Biological Therapy, 15, 873–881.

    Article  PubMed  Google Scholar 

  5. Shi, Y., Leak, R. K., Keep, R. F., & Chen, J. (2016). Translational stroke research on blood-brain barrier damage: challenges, perspectives, and goals. Translational Stroke Research, 7, 89–92.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Diamandis, T., & Borlongan, C. V. (2015). One, two, three steps toward cell therapy for stroke. Stroke: A Journal of Cerebral Circulation, 46, 588–591.

    Article  Google Scholar 

  7. Hao, L., Zou, Z., Tian, H., Zhang, Y., Zhou, H., & Liu, L. (2014). Stem cell-based therapies for ischemic stroke. BioMed Research International, 2014, 468748. doi:10.1155/2014/468748.

  8. Napoli, E., & Borlongan, C. V. (2016). Recent advances in stem cell-based therapeutics for stroke. Translational Stroke Research, 7, 452–457.

    Article  PubMed  Google Scholar 

  9. Ge, J., Guo, L., Wang, S., Zhang, Y., Cai, T., Zhao, R. C., et al. (2014). The size of mesenchymal stem cells is a significant cause of vascular obstructions and stroke. Stem Cell Reviews and Reports, 10, 295–303.

    Article  CAS  PubMed  Google Scholar 

  10. Wankhade, U. D., Shen, M., Kolhe, R., & Fulzele, S. (2016). Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells International, 2016, 3206807.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nam, H. S., Kwon, I., Lee, B. H., Kim, H., Kim, J., An, S., et al. (2015). Effects of mesenchymal stem cell treatment on the expression of matrix metalloproteinases and angiogenesis during ischemic stroke recovery. PLoS One, 10, e0144218.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kurozumi, K., Nakamura, K., Tamiya, T., Kawano, Y., Kobune, M., Hirai, S., et al. (2004). BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Molecular Therapy: The Journal of the American Society of Gene Therapy, 9, 189–197.

    Article  CAS  Google Scholar 

  13. Kim, T. K., & Eberwine, J. H. (2010). Mammalian cell transfection: the present and the future. Analytical and Bioanalytical Chemistry, 397, 3173–3178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao, M. Z., Nonoguchi, N., Ikeda, N., Watanabe, T., Furutama, D., Miyazawa, D., et al. (2006). Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 26, 1176–1188.

    Article  CAS  Google Scholar 

  15. Horita, Y., Honmou, O., Harada, K., Houkin, K., Hamada, H., & Kocsis, J. D. (2006). Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. Journal of Neuroscience Research, 84, 1495–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, H., Honmou, O., Harada, K., Nakamura, K., Houkin, K., Hamada, H., et al. (2006). Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain: A Journal of Neurology, 129, 2734–2745.

    Article  CAS  Google Scholar 

  17. Jaye, M., Howk, R., Burgess, W., Ricca, G. A., Chiu, I. M., Ravera, M. W., et al. (1986). Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosome localization. Science, 233, 541–545.

    Article  CAS  PubMed  Google Scholar 

  18. Ornitz, D. M., Xu, J., Colvin, J. S., McEwen, D. G., MacArthur, C. A., Coulier, F., et al. (1996). Receptor specificity of the fibroblast growth factor family. The Journal of Biological Chemistry, 271, 15292–15297.

    Article  CAS  PubMed  Google Scholar 

  19. Eckenstein, F. P., Andersson, C., Kuzis, K., & Woodward, W. R. (1994). Distribution of acidic and basic fibroblast growth factors in the mature, injured and developing rat nervous system. Progress in Brain Research, 103, 55–64.

    Article  CAS  PubMed  Google Scholar 

  20. Ribeiro-Resende, V. T., Carrier-Ruiz, A., Lemes, R. M., Reis, R. A., & Mendez-Otero, R. (2012). Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system. Molecular Neurodegeneration, 7, 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zakrzewska, M., Marcinkowska, E., & Wiedlocha, A. (2008). FGF-1: from biology through engineering to potential medical applications. Critical Reviews in Clinical Laboratory Sciences, 45, 91–135.

    Article  CAS  PubMed  Google Scholar 

  22. Walpurgis, K., Thomas, A., Laussmann, T., Horta, L., Metzger, S., Schanzer, W., et al. (2011). Identification of fibroblast growth factor 1 (FGF-1) in a black market product. Drug Testing and Analysis, 3, 791–797.

    Article  CAS  PubMed  Google Scholar 

  23. Kulahin, N., Kiselyov, V., Kochoyan, A., Kristensen, O., Kastrup, J. S., Berezin, V., et al. (2007). Structure of rat acidic fibroblast growth factor at 1.4 A resolution. Acta Crystallographica Section F Structural Biology Crystallization Communications, 63, 65–68.

    Article  CAS  Google Scholar 

  24. Hoseini, S. J., Ghazavi, H., Forouzanfar, F., Mashkani, B., Ghorbani, A., Mahdipour, E., et al. (2017). Fibroblast growth factor 1-transfected adipose-derived mesenchymal stem cells promote angiogenic proliferation. DNA and Cell Biology, 36, 401–412.

    Article  CAS  PubMed  Google Scholar 

  25. Participants, T. S. (2009). Stem cell therapies as an emerging paradigm in stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke: A Journal of Cerebral Circulation, 40, 510–515.

    Article  Google Scholar 

  26. Garcia-Bonilla, L., Rosell, A., Torregrosa, G., Salom, J. B., Alborch, E., Gutierrez, M., et al. (2011). Recommendations guide for experimental animal models in stroke research. Neurologia (Barcelona, Spain), 26, 105–110.

    Article  CAS  Google Scholar 

  27. Couturier, J. Y., Ding-Zhou, L., Croci, N., Plotkine, M., & Margaill, I. (2003). 3-aminobenzamide reduces brain infarction and neutrophil infiltration after transient focal cerebral ischemia in mice. Experimental Neurology, 184, 973–980.

    Article  CAS  PubMed  Google Scholar 

  28. Gutiérrez-Fernández, M., Rodríguez-Frutos, B., Ramos-Cejudo, J., Vallejo-Cremades, M. T., Fuentes, B., & Cerdan, S. (2013). Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Research & Therapy, 4, 11–23.

    Article  Google Scholar 

  29. Forouzanfar, F., Hosseinzadeh, H., Ebrahimzadeh Bideskan, A., & Sadeghnia, H. R. (2016). Aqueous and ethanolic extracts of boswellia serrata protect against focal cerebral ischemia and reperfusion injury in rats. Phytotherapy Research: PTR, 30, 1954–1967.

    Article  PubMed  Google Scholar 

  30. Jin, R., Yang, G., & Li, G. (2010). Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. Journal of Leukocyte Biology, 87, 779–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Borlongan, C. V., Kaneko, Y., Maki, M., Yu, S. J., Ali, M., Allickson, J. G., et al. (2010). Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells and Development, 19, 439–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gutiérrez-Fernández, M., Rodríguez-Frutos, B., Álvarez-Grech, J., Vallejo-Cremades, M. T., Expósito-Alcaide, M., & Merino, J. (2011). Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neuroscience, 175, 394–405.

    Article  PubMed  Google Scholar 

  33. Bottcher, R. T., & Niehrs, C. (2005). Fibroblast growth factor signaling during early vertebrate development. Endocrine Reviews, 26, 63–77.

    Article  PubMed  Google Scholar 

  34. Vafaee, F., Zangiabadi, N., Pour, F. M., Dehghanian, F., Asadi-Shekaari, M., & Afshar, H. K. (2012). Neuroprotective effects of the immunomodulatory drug Setarud on cerebral ischemia in male rats. Neural Regeneration Research, 7, 2085–2091.

    PubMed  PubMed Central  Google Scholar 

  35. Zhang, F., & Chen, J. (2012). Infarct measurement in focal cerebral ischemia: TTC staining. In J. Chen, X.-M. Xu, Z. C. Xu & J. H. Zhang (Eds.), Animal models of acute neurological injuries II: Injury and mechanistic assessments vol. 2 (pp. 93–98). Totowa: Humana Press.

  36. Piera, C., Pavía, A., Bassa, P., & García, J. (1990). Preparation of [99mTc] HM-PAO. Journal of Nuclear Medicine, 31, 127–128.

    CAS  PubMed  Google Scholar 

  37. Sadri, K., Momenypoor, S., Kakhki, V. R. D., Sadeghi, R., Aryana, K., Daha, F. J., et al. (2015). Nano liposomes labeled with 99mTc-HMPAO, a novel agent for blood pool imaging. Iranian Journal of Pharmaceutical Research: IJPR, 14, 981.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Detante, O., Moisan, A., Dimastromatteo, J., Richard, M.-J., Riou, L., Grillon, E., et al. (2009). Intravenous administration of 99mTc-HMPAO-labeled human mesenchymal stem cells after stroke: in vivo imaging and biodistribution. Cell Transplantation, 18, 1369–1379.

    Article  PubMed  Google Scholar 

  39. Ghorbani, A., Mohebbati, R., Jafarian, A. H., Vahedi, M. M., Hosseini, S. M., Soukhtanloo, M., et al. (2016). Toxicity evaluation of hydroalcoholic extract of Ferula gummosa root. Regulatory Toxicology and Pharmacology: RTP, 77, 35–41.

    Article  CAS  PubMed  Google Scholar 

  40. Ataei, M. L., & Ebrahimzadeh-Bideskan, A. R. (2014). The effects of nano-silver and garlic administration during pregnancy on neuron apoptosis in rat offspring hippocampus. Iran Journal Basic Medical Sciences, 17, 411–418.

    Google Scholar 

  41. Amin, B., Abnous, K., Motamedshariaty, V., & Hosseinzadeh, H. (2014). Attenuation of oxidative stress, inflammation and apoptosis by ethanolic and aqueous extracts of Crocus sativus L. stigma after chronic constriction injury of rats. Anais da Academia Brasileira de Ciências, 86, 1821–1832.

  42. Choudhery, M. S., Badowski, M., Muise, A., Pierce, J., & Harris, D. T. (2014). Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. Journal of Translational Medicine, 12, 8–22.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pintea, I. L., Rolea, E., Balseanu, A. T., Pirici, I., Pop, O. T., & Mogoanta, L. (2011). Study of cellular changes induced by moderate cerebral ischemia achieved through internal carotid artery ligation. Romanian Journal of Morphology and Embryology, 52, 1347–1353.

    PubMed  Google Scholar 

  44. D’Souza, N., Rossignoli, F., Golinelli, G., Grisendi, G., Spano, C., Candini, O., et al. (2015). Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Medicine, 13, 186.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schimke, M. M., Marozin, S., & Lepperdinger, G. (2015). Patient-specific age: the other side of the coin in advanced mesenchymal stem cell therapy. Frontiers in Physiology, 6, 362.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gutierrez-Fernandez, M., Rodriguez-Frutos, B., Ramos-Cejudo, J., Otero-Ortega, L., Fuentes, B., Vallejo-Cremades, M. T., et al. (2015). Comparison between xenogeneic and allogeneic adipose mesenchymal stem cells in the treatment of acute cerebral infarct: proof of concept in rats. Journal of Translational Medicine, 13, 46.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tobita, M., Tajima, S., & Mizuno, H. (2015). Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: stem cell transplantation methods that enhance stemness. Stem Cell Research & Therapy, 6, 215.

    Article  Google Scholar 

  48. Javazon, E. H., Beggs, K. J., & Flake, A. W. (2004). Mesenchymal stem cells: paradoxes of passaging. Experimental Hematology, 32, 414–425.

    Article  CAS  PubMed  Google Scholar 

  49. Durukan, A., & Tatlisumak, T. (2007). Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacology, Biochemistry, and Behavior, 87, 179–197.

    Article  CAS  PubMed  Google Scholar 

  50. Rodríguez-Frutos, B., Otero-Ortega, L., Gutiérrez-Fernández, M., Fuentes, B., Ramos-Cejudo, J., & Díez-Tejedor, E. (2016). Stem cell therapy and administration routes after stroke. Translational Stroke Research, 7, 378–387.

    Article  PubMed  Google Scholar 

  51. Wu, J., Sun, Z., Sun, H. S., Wu, J., Weisel, R. D., Keating, A., et al. (2008). Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplantation, 16, 993–1005.

    Article  PubMed  Google Scholar 

  52. Gutierrez-Fernandez, M., Otero-Ortega, L., Ramos-Cejudo, J., Rodriguez-Frutos, B., Fuentes, B., & Diez-Tejedor, E. (2015). Adipose tissue-derived mesenchymal stem cells as a strategy to improve recovery after stroke. Expert Opinion on Biological Therapy, 15, 873–881.

    Article  CAS  PubMed  Google Scholar 

  53. Borlongan, C. V., Lind, J. G., Dillon-Carter, O., Yu, G., Hadman, M., Cheng, C., et al. (2004). Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Research, 1010, 108–116.

    Article  CAS  PubMed  Google Scholar 

  54. Sarukhan, A., Zanotti, L., & Viola, A. (2015). Mesenchymal stem cells: myths and reality. Swiss Medical Weekly, 145, w14229.

    PubMed  Google Scholar 

  55. Leibacher, J., & Henschler, R. (2016). Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Research & Therapy, 7, 1–12.

    Article  Google Scholar 

  56. Gutierrez-Fernandez, M., Rodriguez-Frutos, B., Alvarez-Grech, J., Vallejo-Cremades, M. T., Exposito-Alcaide, M., Merino, J., et al. (2011). Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neuroscience, 175, 394–405.

    Article  CAS  PubMed  Google Scholar 

  57. Borlongan, C. V., Hadman, M., Davis Sanberg, C., & Sanberg, P. R. (2004). Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke: A Journal of Cerebral Circulation, 35, 2385–2389.

    Article  Google Scholar 

  58. Li, Y., Chen, J., Chen, X. G., Wang, L., Gautam, S. C., Xu, Y. X., et al. (2002). Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology, 59, 514–523.

    Article  CAS  PubMed  Google Scholar 

  59. Park, B. N., Shim, W., Lee, G., Bang, O. Y., An, Y. S., Yoon, J. K., et al. (2011). Early distribution of intravenously injected mesenchymal stem cells in rats with acute brain trauma evaluated by (99 m)Tc-HMPAO labeling. Nuclear Medicine and Biology, 38, 1175–1182.

  60. Rosado-de-Castro, P. H., Pimentel-Coelho, P. M., Gutfilen, B., Lopes de Souza, S. A., de Freitas, G. R., Mendez-Otero, R., et al. (2014). Radiopharmaceutical stem cell tracking for neurological diseases. BioMed Research International, 2014, 417091.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chelluboina, B., Klopfenstein, J. D., Pinson, D. M., Wang, D. Z., & Veeravalli, K. K. (2014). Stem cell treatment after cerebral ischemia regulates the gene expression of apoptotic molecules. Neurochemical Research, 39, 1511–1521.

    Article  CAS  PubMed  Google Scholar 

  62. Rodriguez-Enfedaque, A., Bouleau, S., Laurent, M., Courtois, Y., Mignotte, B., Vayssiere, J. L., et al. (2009). FGF1 nuclear translocation is required for both its neurotrophic activity and its p53-dependent apoptosis protection. Biochimica et Biophysica Acta, 1793, 1719–1727.

    Article  CAS  PubMed  Google Scholar 

  63. Beenken, A., & Mohammadi, M. (2009). The FGF family: biology, pathophysiology and therapy. Nature Reviews. Drug Discovery, 8, 235–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wiedlocha, A., Nilsen, T., Wesche, J., Sorensen, V., Malecki, J., Marcinkowska, E., et al. (2005). Phosphorylation-regulated nucleocytoplasmic trafficking of internalized fibroblast growth factor-1. Molecular Biology of the Cell, 16, 794–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dailey, L., Ambrosetti, D., Mansukhani, A., & Basilico, C. (2005). Mechanisms underlying differential responses to FGF signaling. Cytokine & Growth Factor Reviews, 16, 233–247.

    Article  CAS  Google Scholar 

  66. Bober, J., Olsnes, S., Kostas, M., Bogacz, M., Zakrzewska, M., & Otlewski, J. (2016). Identification of new FGF1 binding partners-implications for its intracellular function. IUBMB Life, 68, 242–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bouleau, S., Parvu-Ferecatu, I., Rodriguez-Enfedaque, A., Rincheval, V., Grimal, H., Mignotte, B., et al. (2007). Fibroblast growth factor 1 inhibits p53-dependent apoptosis in PC12 cells. Apoptosis: An International Journal on Programmed Cell Death, 12, 1377–1387.

    Article  CAS  Google Scholar 

  68. Russell, J. C., Szuflita, N., Khatri, R., Laterra, J., & Hossain, M. A. (2006). Transgenic expression of human FGF-1 protects against hypoxic-ischemic injury in perinatal brain by intervening at caspase-XIAP signaling cascades. Neurobiology of Diseases, 22, 677–690.

    Article  CAS  Google Scholar 

  69. Hossain, M. A., Fielding, K. E., Trescher, W. H., Ho, T., Wilson, M. A., & Laterra, J. (1998). Human FGF-1 gene delivery protects against quinolinate-induced striatal and hippocampal injury in neonatal rats. The European Journal of Neuroscience 0953-816X (P), 10, 2490–2499.

    CAS  Google Scholar 

  70. Bouleau, S., Grimal, H., Rincheval, V., Godefroy, N., Mignotte, B., Vayssiere, J. L., et al. (2005). FGF1 inhibits p53-dependent apoptosis and cell cycle arrest via an intracrine pathway. Oncogene, 24, 7839–7849.

    Article  CAS  PubMed  Google Scholar 

  71. Wiedlocha, A., & Sorensen, V. (2004). Signaling, internalization, and intracellular activity of fibroblast growth factor. Current Topics in Microbiology and Immunology, 286, 45–79.

    CAS  PubMed  Google Scholar 

  72. Cuevas, P., Martinez-Coso, V., Fu, X., Orte, L., Reimers, D., Gimenez-Gallego, G., et al. (1999). Fibroblast growth factor protects the kidney against ischemia-reperfusion injury. European Journal of Medical Research, 4, 403–410.

    CAS  PubMed  Google Scholar 

  73. Lin, Q., Cai, L., & Tan, Y. (2017). Fibroblast growth factor 1 ameliorates diabetic nephropathy through an anti-inflammatory mechanism. The FASEB Journal, 31, 716–717.

    Google Scholar 

  74. Liu, N., Zhang, Y., Fan, L., Yuan, M., Du, H., Cheng, R., Liu, D., & Lin, F. (2011). Effects of transplantation with bone marrowderived mesenchymal stem cells modified by Survivin on experimental stroke in rats. Translational Medicine, 9, 105

    Article  CAS  Google Scholar 

  75. Honma, T., Honmou, O., Iihoshi, S., Harada, K., Houkin, K., Hamada, H., et al. (2006). Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Experimental Neurology, 199, 56–66.

    Article  CAS  PubMed  Google Scholar 

  76. Renaud, F., Desset, S., Oliver, L., Gimenez-Gallego, G., Van Obberghen, E., Courtois, Y., et al. (1996). The neurotrophic activity of fibroblast growth factor 1 (FGF1) depends on endogenous FGF1 expression and is independent of the mitogen-activated protein kinase cascade pathway. The Journal of Biological Chemistry, 271, 2801–2811.

    Article  CAS  PubMed  Google Scholar 

  77. Ito, J., Nagayasu, Y., Lu, R., Kheirollah, A., Hayashi, M., & Yokoyama, S. (2005). Astrocytes produce and secrete FGF-1, which promotes the production of apoE-HDL in a manner of autocrine action. Journal of Lipid Research, 46, 679–686.

    Article  CAS  PubMed  Google Scholar 

  78. Steiner, B., Roch, M., Holtkamp, N., & Kurtz, A. (2012). Systemically administered human bone marrow-derived mesenchymal stem home into peripheral organs but do not induce neuroprotective effects in the MCAo-mouse model for cerebral ischemia. Neuroscience Letters, 513, 25–30.

    Article  CAS  PubMed  Google Scholar 

  79. Leu, S., Lin, Y. C., Yuen, C. M., Yen, C. H., Kao, Y. H., & Sun, C. K. (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. Journal of Translation Medicine, 8, 63.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Vice Chancellery for Research and Technology and the Stem Cell Research and Application Core of Mashhad University of Medical Sciences grants (921716) and by the Iran’s Vice-Presidency for Science and Technology grant (11/63941).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid Reza Sadeghnia or Majid Ghayour-Mobarhan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazavi, H., Hoseini, S.J., Ebrahimzadeh-Bideskan, A. et al. Fibroblast Growth Factor Type 1 (FGF1)-Overexpressed Adipose-Derived Mesenchaymal Stem Cells (AD-MSCFGF1) Induce Neuroprotection and Functional Recovery in a Rat Stroke Model. Stem Cell Rev and Rep 13, 670–685 (2017). https://doi.org/10.1007/s12015-017-9755-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9755-z

Keywords

Navigation