Skip to main content

Advertisement

Log in

Induced Pluripotent Stem Cells as a new Strategy for Osteogenesis and Bone Regeneration

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Induced pluripotent stem (iPS) cells, possess high proliferation and differentiation ability, are now considered an attractive option for osteogenic differentiation and bone regeneration. In fact, recent discoveries have demonstrated that iPS cells can be differentiated into osteoblasts, suggesting that iPS cells have the potential to advance future bone regenerative therapies. Herein, we provide an overview of the recent findings on osteogenic characteristics and differentiation potential of iPS cells. In addition, we discuss current methods for inducing their specification towards osteogenic phenotype as well as in vivo evidence supporting the therapeutic benefit of iPS-derived osteoblasts. Finally, we describe recent findings regarding the use of iPS-derived cells for osteogenic differentiation and bone regeneration, which have indicated that these pluripotent cells represent an ideal tool for regenerative cell therapies and might contribute to the development of future bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sabareeswaran, A., Basu, B., Shenoy, S. J., Jaffer, Z., Saha, N., & Stamboulis, A. (2013). Early osseointegration of a strontium containing glass ceramic inarabbit model. Biomaterials, 34(37), 9278–9286.

    Article  CAS  PubMed  Google Scholar 

  2. O’Keefe, R. J., & Mao, J. (2011). Bone tissue engineering and regeneration: from discovery to the clinic-an overview introduction. Tissue Engineering, Part B-Reviews, 17(6), 389–392.

    Article  Google Scholar 

  3. Nawawi, N. A., Alqap, A. S. F., & Sopyan, I. (2011). Recent progress on hydroxyapatite-based dense biomaterials for load bearing bone substitutes. Recent Pat Mater Science, 4(1), 63–80.

    Article  CAS  Google Scholar 

  4. Tan, L., Yu, X., Wan, P., & Yang, K. (2013). Biodegradable materials for bone repairs: a review. Journal of Materials Science and Technology, 29(6), 503–513.

    Article  CAS  Google Scholar 

  5. Murphy, S. V., & Atala, A. (2013). Organ engineering combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. Bioessays, 35(3), 163–172.

    Article  CAS  PubMed  Google Scholar 

  6. Martino, S., D’Angelo, F., Armentano, I., Maria Kenny, J., & Orlacchio, A. (2012). Stem cell-biomaterial interactions for regenerative medicine. Biotechnology Advances, 30(1), 338–351.

    Article  CAS  PubMed  Google Scholar 

  7. Prabhakaran, M. P., Venugopal, J., Ghasemi-Mobarakeh, L., Kai. D., Jin, G., Ramakrishna. S., (2012). Stem Cells and Nanostructures for Advanced Tissue Regeneration. In: Biomedical Applications of Polymeric Nanofibers. Edited by Jayakumar R, Nair SV, vol. 246: 21–62.

  8. Liu, H., Peng, H., Wu, Y., Zhang, C., Cai, Y., Xu, G., Li, Q., Chen, X., Ji, J., Zhang, Y., et al. (2013). The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials, 34(18), 4404–4417.

    Article  CAS  PubMed  Google Scholar 

  9. Peng, H., Yin, Z., Liu, H., Chen, X., Feng, B., Yuan, H., Su, B., Ouyang, H., Zhang, Y. (2012). Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. Nanotechnology, 23(48).

  10. Yoshida, Y., & Yamanaka, S. (2011). iPS cells: a source of cardiac regeneration. Journal of Molecular and Cellular Cardiology, 50(2), 327–332.

    Article  CAS  PubMed  Google Scholar 

  11. Stenderup, K., Justesen, J., Clausen, C., & Kassem, M. (2003). Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 33(6), 919–926.

    Article  PubMed  Google Scholar 

  12. Wen, Y., Wang, F., Zhang, W., Li, Y., Yu, M., Nan, X., Chen, L., Yue, W., Xu, X., & Pei, X. (2012). Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Engineering Part A, 18(15–16), 1677–1685.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  14. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi, K., & Yamanaka, S. (2013). Induced pluripotent stem cells in medicine and biology. Development, 140(12), 2457–2461.

    Article  CAS  PubMed  Google Scholar 

  17. Yamanaka, S. (2012). Induced pluripotent stem cells: past, present, and future. Cell Stem Cell, 10(6), 678–684.

    Article  CAS  PubMed  Google Scholar 

  18. Teng, S., Liu, C., Krettek, C., & Jagodzinski, M. (2014). The application of induced pluripotent stem cells for bone regeneration: current progress and prospects. Tissue Eng, Part B-Rev, 20(4), 328–339.

    Article  CAS  Google Scholar 

  19. Shen, H.-F., Yao, Z.-F., Xiao, G.-F., Jia, J.-S., Xiao, D., & Yao, K.-T. (2009). Induced pluripotent stem cells (iPS Cells): current status and future prospect. Progress in Biochemistry and Biophysics, 36(8), 950–960.

    Article  Google Scholar 

  20. Duan, X., Tu, Q., Zhang, J., Ye, J., Sommer, C., Mostoslavsky, G., Kaplan, D., Yang, P., & Chen, J. (2011). Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. Journal of Cellular Physiology, 226(1), 150–157.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Nelson, T. J., Martinez-Fernandez, A., & Terzic, A. (2010). Induced pluripotent stem cells: developmental biology to regenerative medicine. Nature Reviews Cardiology, 7(12), 700–710.

    PubMed  Google Scholar 

  22. Iglesias-Garcia, O., Pelacho, B., & Prosper, F. (2013). Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling. Journal of Molecular and Cellular Cardiology, 62, 43–50.

    Article  CAS  PubMed  Google Scholar 

  23. Ardeshirylajimi, A., & Soleimani, M. (2015). Enhanced growth and osteogenic differentiation of induced pluripotent stem cells by extremely Low-frequency electromagnetic field. Cellular and Molecular Biology, 61(1), 36–41.

    CAS  PubMed  Google Scholar 

  24. Wang, M., Deng, Y., Zhou, P., Luo, Z., Li, Q., Xie, B., Zhang, X., Chen, T., Pei, D., Tang, Z., et al. (2015). In vitro culture and directed osteogenic differentiation of human pluripotent stem cells on peptides-decorated two-dimensional microenvironment. ACS Applied Materials & Interfaces, 7(8), 4560–4572.

    Article  CAS  Google Scholar 

  25. Kawaguchi, J. (2006). Generation of osteoblasts and chondrocytes from embryonic stem cells. Methods in Molecular Biology (Clifton, NJ), 330, 135–148.

    CAS  Google Scholar 

  26. Grassel, S., Stockl, S., & Jenei-Lanzl, Z. (2012). Isolation, culture, and osteogenic/chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Methods in Molecular Biology (Clifton, NJ), 879, 203–267.

    Article  Google Scholar 

  27. Alfred, R., Taiani, J. T., Krawetz, R. J., Yamashita, A., Rancourt, D. E., & Kallos, M. S. (2011). Large-scale production of murine embryonic stem cell-derived osteoblasts and chondrocytes on microcarriers in serum-free media. Biomaterials, 32(26), 6006–6016.

    CAS  PubMed  Google Scholar 

  28. Lavrentieva, A., Hatlapatka, T., Neumann, A., Weyand, B., & Kasper, C. (2013). Potential for osteogenic and chondrogenic differentiation of MSC. In B. Weyand, M. Dominici, R. Hass, R. Jacobs, & C. Kasper (Eds.), Mesenchymal stem cells: Basics and clinical application I (Vol. 129, pp. 73–88).

    Chapter  Google Scholar 

  29. Kumaran, S. T., Arun, K. V., Sudarsan, S., Talwar, A., & Srinivasan, N. (2010). Osteoblast response to commercially available demineralized bone matrices–an in-vitro study. Indian Journal of Dental Research : Official Publication of Indian Society for Dental Research, 21(1), 3–9.

    Article  Google Scholar 

  30. Hayashi, T., Misawa, H., Nakahara, H., Noguchi, H., Yoshida, A., Kobayashi, N., Tanaka, M., & Ozaki, T. (2012). Transplantation of osteogenically differentiated mouse iPS cells for bone repair. Cell Transplantation, 21(2–3), 591–600.

    Article  PubMed  Google Scholar 

  31. Quarto, N., Li, S., Renda, A., & Longaker, M. T. (2012). Exogenous activation of BMP-2 signaling overcomes TGF beta-mediated inhibition of osteogenesis in marfan embryonic stem cells and marfan patient-specific induced pluripotent stem cells. Stem Cells, 30(12), 2709–2719.

    Article  CAS  PubMed  Google Scholar 

  32. zur Nieden, N. I., Kempka, G., & Ahr, H. J. (2003). In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation, 71(1), 18–27.

    Article  PubMed  Google Scholar 

  33. Rui, Y. F., Lui, P. P. Y., Ni, M., Chan, L. S., Lee, Y. W., & Chan, K. M. (2011). Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. Journal of Orthopaedic Research, 29(3), 390–396.

    Article  CAS  PubMed  Google Scholar 

  34. Zachos, T. A., Shields, K. M., & Bertone, A. L. (2006). Gene-mediated osteogenic differentiation of stem cells by bone morphogenetic proteins-2 or-6. Journal of Orthopaedic Research, 24(6), 1279–1291.

    Article  CAS  PubMed  Google Scholar 

  35. Song, I., Kim, B.-S., Kim, C.-S., & Im, G.-I. (2011). Effects of BMP-2 and vitamin D-3 on the osteogenic differentiation of adipose stem cells. Biochemical and Biophysical Research Communications, 408(1), 126–131.

    Article  CAS  PubMed  Google Scholar 

  36. Luu, H. H., Song, W. X., Luo, X. J., Manning, D., Luo, J. Y., Deng, Z. L., Sharffl, K. A., Montag, A. G., Haydon, R. C., & He, T. C. (2007). Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. Journal of Orthopaedic Research, 25(5), 665–677.

    Article  CAS  PubMed  Google Scholar 

  37. Kao, C.-L., Tai, L.-K., Chiou, S.-H., Chen, Y.-J., Lee, K.-H., Chou, S.-J., Chang, Y.-L., Chang, C.-M., Chen, S.-J., Ku, H.-H., et al. (2010). Resveratrol promotes osteogenic differentiation and protects against Dexamethasone damage in murine induced pluripotent stem cells. Stem Cells and Development, 19(2), 247–258.

    Article  CAS  PubMed  Google Scholar 

  38. Okano, H., Nakamura, M., Yoshida, K., Okada, Y., Tsuji, O., Nori, S., Ikeda, E., Yamanaka, S., & Miura, K. (2013). Steps toward safe cell therapy using induced pluripotent stem cells. Circulation Research, 112(3), 523–533.

    Article  CAS  PubMed  Google Scholar 

  39. Li, F., Niyibizi, C., (2012). Cells derived from murine induced pluripotent stem cells (iPSC) by treatment with members of TGF-beta family give rise to osteoblasts differentiation and form bone in vivo. Bmc Cell Biology, 13.

  40. Bilousova, G., Jun, D. H., King, K. B., De Langhe, S., Chick, W. S., Torchia, E. C., Chow, K. S., Klemm, D. J., Roop, D. R., & Majka, S. M. (2011). Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells, 29(2), 206–216.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Tashiro, K., Inamura, M., Kawabata, K., Sakurai, F., Yamanishi, K., Hayakawa, T., & Mizuguchi, H. (2009). Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells, 27(8), 1802–1811.

    Article  CAS  PubMed  Google Scholar 

  42. Stefani, G., & Slack, F. J. (2008). Small non-coding RNAs in animal development. Nature Reviews Molecular Cell Biology, 9(3), 219–230.

    Article  CAS  PubMed  Google Scholar 

  43. Li, Z., Hassan, M. Q., Volinia, S., van Wijnen, A. J., Stein, J. L., Croce, C. M., Lian, J. B., & Stein, G. S. (2008). A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proceedings of the National Academy of Sciences of the United States of America, 105(37), 13906–13911.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Li, Z., Hassan, M. Q., Jafferji, M., Aqeilan, R. I., Garzon, R., Croce, C. M., van Wijnen, A. J., Stein, J. L., Stein, G. S., & Lian, J. B. (2009). Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. Journal of Biological Chemistry, 284(23), 15676–15684.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Okamoto, H., Matsumi, Y., Hoshikawa, Y., Takubo, K., Ryoke, K., Shiota, G., (2012). Involvement of MicroRNAs in Regulation of Osteoblastic Differentiation in Mouse Induced Pluripotent Stem Cells. Plos One, 7(8).

  46. Jin, G.-Z., Kim, T.-H., Kim, J.-H., Won, J.-E., Yoo, S.-Y., Choi, S.-J., Hyun, J. K., & Kim, H.-W. (2013). Bone tissue engineering of induced pluripotent stem cells cultured with macrochanneled polymer scaffold. Journal of Biomedical Materials Research. Part A, 101A(5), 1283–1291.

    Article  CAS  Google Scholar 

  47. Chen, X.-D., Dusevich, V., Feng, J. Q., Manolagas, S. C., & Jilka, R. L. (2007). Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. Journal of Bone and Mineral Research, 22(12), 1943–1956.

    Article  CAS  PubMed  Google Scholar 

  48. Holzwarth, J. M., & Ma, P. X. (2011). Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials, 32(36), 9622–9629.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. D’Angelo, F., Armentano, I., Cacciotti, I., Tiribuzi, R., Quattrocelli, M., Del Gaudio, C., Fortunati, E., Saino, E., Caraffa, A., Cerulli, G. G., et al. (2012). Tuning multi/pluri-potent stem cell fate by electrospun poly(L-lactic acid)-calcium-deficient hydroxyapatite nanocomposite mats. Biomacromolecules, 13(5), 1350–1360.

    Article  PubMed  Google Scholar 

  50. Kobayashi, T., Yamaguchi, T., Hamanaka, S., Kato-Itoh, M., Yamazaki, Y., Ibata, M., Sato, H., Lee, Y.-S., Usui, J.-i., Knisely, A. S., et al. (2010). Generation of Rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell, 142(5), 787–799.

    Article  CAS  PubMed  Google Scholar 

  51. Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120(5), 408–416.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Park, S., & Im, G.-I. (2014). Embryonic stem cells and induced pluripotent stem cells for skeletal regeneration. Tissue English, Part B-Rev, 20(5), 381–391.

    Article  Google Scholar 

  53. Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., Apostolou, E., Stadtfeld, M., Li, Y. S., Shioda, T., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28(8), 848–U130.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Nasu, A., Ikeya, M., Yamamoto, T., Watanabe, A., Jin, Y. H., Matsumoto, Y., Hayakawa, K., Amano, N., Sato, S., Osafune, K. et al, (2013). Genetically Matched Human iPS Cells Reveal that Propensity for Cartilage and Bone Differentiation Differs with Clones, not Cell Type of Origin. Plos One, 8(1).

  55. Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481(7381), 295–305.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Feng, B., Ng, J. H., Heng, J. C. D., & Ng, H. H. (2009). Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell, 4(4), 301–312.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This contribution is funded by the Natural Science Foundation Project of Shanghai, China (15ZR1400500) and the Fundamental Research Funds for the Central Universities by the Ministry of Education of China (2232013D3-13 and 15D110538).

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangxin Lou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, X. Induced Pluripotent Stem Cells as a new Strategy for Osteogenesis and Bone Regeneration. Stem Cell Rev and Rep 11, 645–651 (2015). https://doi.org/10.1007/s12015-015-9594-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-015-9594-8

Keywords

Navigation