Skip to main content
Log in

Highly Efficient Derivation of Skeletal Myotubes from Human Embryonic Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Human embryonic stem cells (hESCs) are a promising model for the research of embryonic development and regenerative medicine. Since the first hESC line was established, many researchers have shown that pluripotent hESCs can be directed into many types of functional adult cells in culture. However, most of the reported methods have induced differentiation through the alteration of growth factors in the culture medium. These methods are time consuming; moreover, it is difficult to obtain a pure population of the desired cells because of the low efficiency of induction. In this study, we used a lentiviral-based inducible gene-expression system in hESCs to control the ectopic expression of MyoD, which is an essential transcription factor in skeletal muscle development. The induction of MyoD can efficiently direct the pluripotent hESCs into mesoderm in 24 h. The cells then become proliferated myoblasts and finally form multinucleated myotubes in vitro. The whole procedure took about 10 days, with an induction efficiency of over 90 %. To our knowledge, this is the first time that hESCs have been induced into terminally differentiated cells with only one factor. In the future, these results could be a potential resource for cell therapy for diseases of muscle dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  2. Wu, Z., Li, H., Rao, L., He, L., Bao, L., Liao, J., Cui, C., Zuo, Z., Li, Q., Dai, H., Qian, L., Tian, Q., Xiao, L., & Tan, X. (2011). Derivation and characterization of human embryonic stem cell lines from the Chinese population. Journal of Genetics and Genomics, 38, 13–20.

    Article  PubMed  CAS  Google Scholar 

  3. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  4. Xia, X., Ayala, M., Thiede, B. R., & Zhang, S. C. (2008). In vitro- and in vivo-induced transgene expression in human embryonic stem cells and derivatives. Stem Cells, 26, 525–533.

    Article  PubMed  CAS  Google Scholar 

  5. Vieyra, D. S., & Goodell, M. A. (2007). Pluripotentiality and conditional transgene regulation in human embryonic stem cells expressing insulated tetracycline-ON transactivator. Stem Cells, 25, 2559–2566.

    Article  PubMed  CAS  Google Scholar 

  6. Zhou, B. Y., Ye, Z., Chen, G., Gao, Z. P., Zhang, Y. A., & Cheng, L. (2007). Inducible and reversible transgene expression in human stem cells after efficient and stable gene transfer. Stem Cells, 25, 779–789.

    Article  PubMed  CAS  Google Scholar 

  7. Dixon, J. E., Dick, E., Rajamohan, D., Shakesheff, K. M., & Denning, C. (2011). Directed differentiation of human embryonic stem cells to interrogate the cardiac gene regulatory network. Molecular Therapy, 19, 1695–1703.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, X., Huang, C. T., Chen, J., Pankratz, M. T., Xi, J., Li, J., Yang, Y., Lavaute, T. M., Li, X. J., Ayala, M., Bondarenko, G. I., Du, Z. W., Jin, Y., Golos, T. G., & Zhang, S. C. (2010). Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell, 7, 90–100.

    Article  PubMed  CAS  Google Scholar 

  9. Kattman, S. J., Witty, A. D., Gagliardi, M., Dubois, N. C., Niapour, M., Hotta, A., Ellis, J., & Keller, G. (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8, 228–240.

    Article  PubMed  CAS  Google Scholar 

  10. Koch, P., Opitz, T., Steinbeck, J. A., Ladewig, J., & Brustle, O. (2009). A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proceedings of the National Academy of Sciences of the United States of America, 106, 3225–3230.

    Article  PubMed  CAS  Google Scholar 

  11. Park, C. H., Minn, Y. K., Lee, J. Y., Choi, D. H., Chang, M. Y., Shim, J. W., Ko, J. Y., Koh, H. C., Kang, M. J., Kang, J. S., Rhie, D. J., Lee, Y. S., Son, H., Moon, S. Y., Kim, K. S., & Lee, S. H. (2005). In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. Journal Of Neurochemistry, 92, 1265–1276.

    Article  PubMed  CAS  Google Scholar 

  12. Barberi, T., Willis, L. M., Socci, N. D., & Studer, L. (2005). Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Medicine, 2, e161.

    Article  PubMed  Google Scholar 

  13. Barberi, T., Bradbury, M., Dincer, Z., Panagiotakos, G., Socci, N. D., & Studer, L. (2007). Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nature Medicine, 13, 642–648.

    Article  PubMed  CAS  Google Scholar 

  14. Xiao, L., Yuan, X., & Sharkis, S. J. (2006). Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells, 24, 1476–1486.

    Article  PubMed  CAS  Google Scholar 

  15. Kanisicak, O., Mendez, J. J., Yamamoto, S., Yamamoto, M., & Goldhamer, D. J. (2009). Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Developmental Biology, 332, 131–141.

    Article  PubMed  CAS  Google Scholar 

  16. Zammit, P. S., Carvajal, J. J., Golding, J. P., Morgan, J. E., Summerbell, D., Zolnerciks, J., Partridge, T. A., Rigby, P. W., & Beauchamp, J. R. (2004). Myf5 expression in satellite cells and spindles in adult muscle is controlled by separate genetic elements. Developmental Biology, 273, 454–465.

    Article  PubMed  CAS  Google Scholar 

  17. Sabourin, L. A., Girgis-Gabardo, A., Seale, P., Asakura, A., & Rudnicki, M. A. (1999). Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. Journal Of Cell Biology, 144, 631–643.

    Article  PubMed  CAS  Google Scholar 

  18. Cornelison, D. D., Olwin, B. B., Rudnicki, M. A., & Wold, B. J. (2000). MyoD(-/-) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Developmental Biology, 224, 122–137.

    Article  PubMed  CAS  Google Scholar 

  19. Russo, S., Tomatis, D., Collo, G., Tarone, G., & Tato, F. (1998). Myogenic conversion of NIH3T3 cells by exogenous MyoD family members: dissociation of terminal differentiation from myotube formation. Journal Of Cell Science, 111(Pt 6), 691–700.

    PubMed  CAS  Google Scholar 

  20. Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., & Rudnicki, M. A. (2000). Pax7 is required for the specification of myogenic satellite cells. Cell, 102, 777–786.

    Article  PubMed  CAS  Google Scholar 

  21. Relaix, F., Montarras, D., Zaffran, S., Gayraud-Morel, B., Rocancourt, D., Tajbakhsh, S., Mansouri, A., Cumano, A., & Buckingham, M. (2006). Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. Journal Of Cell Biology, 172, 91–102.

    Article  PubMed  CAS  Google Scholar 

  22. Guo, K., Wang, J., Andres, V., Smith, R. C., & Walsh, K. (1995). MyoD-induced expression of p21 inhibits cyclin-dependent kinase activity upon myocyte terminal differentiation. Molecular And Cellular Biology, 15, 3823–3829.

    PubMed  CAS  Google Scholar 

  23. Ott, M. O., Bober, E., Lyons, G., Arnold, H., & Buckingham, M. (1991). Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development, 111, 1097–1107.

    PubMed  CAS  Google Scholar 

  24. Walsh, F. S., & Ritter, M. A. (1981). Surface antigen differentiation during human myogenesis in culture. Nature, 289, 60–64.

    Article  PubMed  CAS  Google Scholar 

  25. Barbet, R., Peiffer, I., Hatzfeld, A., Charbord, P., & Hatzfeld, J. A. (2011). Comparison of gene expression in human embryonic stem cells, hESC-derived mesenchymal stem cells and human mesenchymal stem cells. Stem Cells International, 2011, 368192.

    Article  PubMed  Google Scholar 

  26. Nikolic, N., Skaret, B. S., Tranheim, K. E., Rudberg, I., Flo, H. I., Rustan, A. C., Thoresen, G. H., & Aas, V. (2012). Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise. PLoS One, 7, e33203.

    Article  PubMed  CAS  Google Scholar 

  27. Darabi, R., Arpke, R. W., Irion, S., Dimos, J. T., Grskovic, M., Kyba, M., & Perlingeiro, R. C. (2012). Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell, 10, 610–619.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Ministry of Science and Technology of China (2011CB965101), the National Science Fund for Distinguished Young Scholars (31025016), the National Natural Science Foundation of China (30971682, 30901019, 31271586), the Ministry of Science and Technology of China (2011CBA01001, 2012AA020503, 2011AA020108), the Fundamental Research Funds for the Central Universities, the Key Construction Program of the National “985” Project (118000+193411801/006), the Research Fund for the Doctoral Program of Higher Education of China (20110101110098).

Submission statement

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xiao.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

Primer sequences for the RT-PCR analyses performed in this study. (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, L., Tang, W., Wei, Y. et al. Highly Efficient Derivation of Skeletal Myotubes from Human Embryonic Stem Cells. Stem Cell Rev and Rep 8, 1109–1119 (2012). https://doi.org/10.1007/s12015-012-9413-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9413-4

Keywords

Navigation