Skip to main content

Advertisement

Log in

Ontogeny and Homeostasis of Adult Epithelial Skin Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mouse epithelial skin stem cells constitute an important model system for understanding the dynamics of stem cell emergence and behavior in an intact vertebrate tissue. Recent published work defined discrete populations of epithelial stem cells in the adult skin epithelium, which reside in the hair follicle bulge and germ, isthmus, sebaceous gland and inter-follicular epidermis. Adult epidermal and hair follicle stem cells seem to adopt mostly symmetric or unidirectional fate decisions of either one of two possible fates: (1) differentiate and be lost from the tissue or (2) expand symmetrically to self-renew. Asymmetric divisions appear to be mostly implicated in differentiation and stratification of the epidermis. While mechanisms of adult stem cell homeostasis begin to be unraveled, the embryonic origin of the adult epithelial skin stem cells is poorly understood. Recent studies reported Sox9, Lgr6, and Runx1 expression in subpopulations of cells in the embryonic hair placode. These subpopulations seem to act as precursors of different classes of adult epithelial stem cells. In particular, Runx1 regulates a Wnt-mediated cross-talk between the nascent adult-type hair follicle stem cells and their environment, which is essential for timely stem cell emergence, proper maturation, long-term differentiation potential, and maintenance. The new data begin to define the basic dynamics and regulatory pathways governing the ontogeny of adult epithelial stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Slack, J. M. (2008). Origin of stem cells in organogenesis. (Translated from eng). Science, 322(5907), 1498–1501 (in eng).

    PubMed  CAS  Google Scholar 

  2. Morrison, S. J., & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. (Translated from eng). Nature, 441(7097), 1068–1074 (in eng).

    PubMed  CAS  Google Scholar 

  3. Dzierzak, E., & Speck, N. A. (2008). Of lineage and legacy: the development of mammalian hematopoietic stem cells. (Translated from eng). Nature Immunology, 9(2), 129–136 (in eng).

    PubMed  CAS  Google Scholar 

  4. Lepper, C., Conway, S. J., & Fan, C. M. (2009). Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. (Translated from eng). Nature, 460(7255), 627–631 (in eng).

    PubMed  CAS  Google Scholar 

  5. Messina, G., & Cossu, G. (2009). The origin of embryonic and fetal myoblasts: a role of Pax3 and Pax7. (Translated from eng). Genes & Development, 23(8), 902–905 (in eng).

    CAS  Google Scholar 

  6. Hutcheson, D. A., Zhao, J., Merrell, A., Haldar, M., & Kardon, G. (2009). Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta-catenin. (Translated from eng). Genes & Development, 23(8), 997–1013 (in eng).

    CAS  Google Scholar 

  7. Yoshida, S., et al. (2006). The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. (Translated from eng). Development, 133(8), 1495–1505 (in eng).

    PubMed  CAS  Google Scholar 

  8. Clayton, E., et al. (2007). A single type of progenitor cell maintains normal epidermis. (Translated from eng). Nature, 446(7132), 185–189 (in eng).

    PubMed  CAS  Google Scholar 

  9. Doupe, D. P., Klein, A. M., Simons, B. D., & Jones, P. H. (2010). The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. (Translated from eng). Developmental Cell, 18(2), 317–323 (in eng).

    PubMed  CAS  Google Scholar 

  10. Zhang, Y. V., Cheong, J., Ciapurin, N., McDermitt, D. J., & Tumbar, T. (2009). Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. (Translated from Eng). Cell Stem Cell, 5(3), 267–278 (in Eng).

    PubMed  CAS  Google Scholar 

  11. Snippert, H. J., et al. (2010). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. (Translated from eng). Cell, 143(1), 134–144 (in eng).

    PubMed  CAS  Google Scholar 

  12. Lopez-Garcia, C., Klein, A. M., Simons, B. D., & Winton, D. J. (2010). Intestinal stem cell replacement follows a pattern of neutral drift. (Translated from eng). Science, 330(6005), 822–825 (in eng).

    PubMed  CAS  Google Scholar 

  13. Klein, A. M., Nakagawa, T., Ichikawa, R., Yoshida, S., & Simons, B. D. (2010). Mouse germ line stem cells undergo rapid and stochastic turnover. (Translated from eng). Cell Stem Cell, 7(2), 214–224 (in eng).

    PubMed  CAS  Google Scholar 

  14. Kutejova, E., Briscoe, J., & Kicheva, A. (2009). Temporal dynamics of patterning by morphogen gradients. (Translated from eng). Current Opinion in Genetics and Development, 19(4), 315–322 (in eng).

    PubMed  CAS  Google Scholar 

  15. Zorn, A. M., & Wells, J. M. (2009). Vertebrate endoderm development and organ formation. (Translated from eng). Annual Review of Cell and Developmental Biology, 25, 221–251 (in eng).

    PubMed  CAS  Google Scholar 

  16. Blanpain, C., & Fuchs, E. (2006). Epidermal stem cells of the skin. (Translated from eng). Annual Review of Cell and Developmental Biology, 22, 339–373 (in eng).

    PubMed  CAS  Google Scholar 

  17. Blanpain, C., & Fuchs, E. (2009). Epidermal homeostasis: a balancing act of stem cells in the skin. (Translated from eng). Nature Reviews Molecular Cell Biology, 10(3), 207–217 (in eng).

    PubMed  CAS  Google Scholar 

  18. Cotsarelis, G. (2006). Epithelial stem cells: a folliculocentric view. (Translated from eng). The Journal of Investigative Dermatology, 126(7), 1459–1468 (in eng).

    PubMed  CAS  Google Scholar 

  19. Tumbar, T. (2006). Epithelial skin stem cells. (Translated from eng). Methods in Enzymology, 419, 73–99 (in eng).

    PubMed  CAS  Google Scholar 

  20. Tiede, S., et al. (2007). Hair follicle stem cells: walking the maze. (Translated from eng). European Journal of Cell Biology, 86(7), 355–376 (in eng).

    PubMed  CAS  Google Scholar 

  21. Duverger, O., & Morasso, M. I. (2009). Epidermal patterning and induction of different hair types during mouse embryonic development. (Translated from eng). Birth Defects Research. Part C, Embryo Today, 87(3), 263–272 (in eng).

    CAS  Google Scholar 

  22. Alexandrescu, D. T., Kauffman, C. L., & Dasanu, C. A. (2009) The cutaneous epidermal growth factor network: can it be translated clinically to stimulate hair growth? (Translated from eng) Dermatology Online Journal, 15(3), 1 (in eng).

    Google Scholar 

  23. Fuchs, E., & Horsley, V. (2008). More than one way to skin. (Translated from eng). Genes & Development, 22(8), 976–985 (in eng).

    CAS  Google Scholar 

  24. Fuchs, E. (2009). Finding one’s niche in the skin. (Translated from eng). Cell Stem Cell, 4(6), 499–502 (in eng).

    PubMed  CAS  Google Scholar 

  25. Fuchs, E. (2007). Scratching the surface of skin development. (Translated from eng). Nature, 445(7130), 834–842 (in eng).

    PubMed  CAS  Google Scholar 

  26. Watt, F. M., Estrach, S., & Ambler, C. A. (2008). Epidermal Notch signalling: differentiation, cancer and adhesion. (Translated from eng). Current Opinion in Cell Biology, 20(2), 171–179 (in eng).

    PubMed  CAS  Google Scholar 

  27. Millar, S. E. (2002). Molecular mechanisms regulating hair follicle development. (Translated from eng). The Journal of Investigative Dermatology, 118(2), 216–225 (in eng).

    PubMed  CAS  Google Scholar 

  28. Millar, S. E. (2006). Smad7: licensed to kill beta-catenin. (Translated from eng). Developmental Cell, 11(3), 274–276 (in eng).

    PubMed  CAS  Google Scholar 

  29. Coulombe, P. A., Kerns, M. L., & Fuchs, E. (2009). Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. (Translated from eng). The Journal of Clinical Investigation, 119(7), 1784–1793 (in eng).

    PubMed  CAS  Google Scholar 

  30. Shimomura, Y., & Christiano, A. M. (2010). Biology and genetics of hair. (Translated from eng). Annual Review of Genomics and Human Genetics, 11, 109–132 (in eng).

    PubMed  CAS  Google Scholar 

  31. Khavari, P. A. (2006). Modelling cancer in human skin tissue. (Translated from eng). Nature Reviews. Cancer, 6(4), 270–280 (in eng).

    PubMed  CAS  Google Scholar 

  32. Morasso, M. I., & Tomic-Canic, M. (2005). Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. (Translated from eng). Biology of the Cell, 97(3), 173–183 (in eng).

    PubMed  CAS  Google Scholar 

  33. Chien, A. J., Conrad, W. H., & Moon, R. T. (2009). A Wnt survival guide: from flies to human disease. (Translated from eng). The Journal of Investigative Dermatology, 129(7), 1614–1627 (in eng).

    PubMed  CAS  Google Scholar 

  34. Gu, B., Watanabe, K., & Dai, X. (2010). Epithelial stem cells: an epigenetic and Wnt-centric perspective. (Translated from eng). Journal of Cellular Biochemistry, 110(6), 1279–1287 (in eng).

    PubMed  CAS  Google Scholar 

  35. Ito, M., et al. (2007). Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. (Translated from eng). Nature, 447(7142), 316–320 (in eng).

    PubMed  CAS  Google Scholar 

  36. Wend, P., Holland, J. D., Ziebold, U., & Birchmeier, W. (2010). Wnt signaling in stem and cancer stem cells. (Translated from eng). Seminars in Cell & Developmental Biology, 21(8), 855–863 (in eng).

    CAS  Google Scholar 

  37. Owens, P., Han, G., Li, A. G., & Wang, X. J. (2008). The role of Smads in skin development. (Translated from eng). The Journal of Investigative Dermatology, 128(4), 783–790 (in eng).

    PubMed  CAS  Google Scholar 

  38. Botchkarev, V. A., & Sharov, A. A. (2004). BMP signaling in the control of skin development and hair follicle growth. (Translated from eng). Differentiation, 72(9–10), 512–526 (in eng).

    PubMed  CAS  Google Scholar 

  39. Zhang, J., et al. (2006). Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. (Translated from eng). Stem Cells, 24(12), 2826–2839 (in eng).

    PubMed  CAS  Google Scholar 

  40. Schneider, M. R., Schmidt-Ullrich, R., & Paus, R. (2009). The hair follicle as a dynamic miniorgan. (Translated from eng). Current Biology, 19(3), R132–R142 (in eng).

    PubMed  CAS  Google Scholar 

  41. Paus, R., et al. (1999). A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. (Translated from eng). The Journal of Investigative Dermatology, 113(4), 523–532 (in eng).

    PubMed  CAS  Google Scholar 

  42. Schmidt-Ullrich, R., & Paus, R. (2005). Molecular principles of hair follicle induction and morphogenesis. (Translated from eng). Bioessays, 27(3), 247–261 (in eng).

    PubMed  CAS  Google Scholar 

  43. Legue, E., & Nicolas, J. F. (2005). Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors. (Translated from eng). Development, 132(18), 4143–4154 (in eng).

    PubMed  CAS  Google Scholar 

  44. Fuchs, E., & Horsley, V. (2011). Ferreting out stem cells from their niches. (Translated from eng). Nature Cell Biology, 13(5), 513–518 (in eng).

    PubMed  CAS  Google Scholar 

  45. Plikus, M. V., et al. (2008). Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. (Translated from eng). Nature, 451(7176), 340–344 (in eng).

    PubMed  CAS  Google Scholar 

  46. Alonso, L., & Fuchs, E. (2006). The hair cycle. Journal of Cell Science, 119(Pt 3), 391–393.

    PubMed  CAS  Google Scholar 

  47. Muller-Rover, S., et al. (2001). A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. (Translated from eng). The Journal of Investigative Dermatology, 117(1), 3–15 (in eng).

    PubMed  CAS  Google Scholar 

  48. Rendl, M., Lewis, L., & Fuchs, E. (2005) Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. (Translated from eng) PLoS Biology, 3(11):e331 (in eng).

    Google Scholar 

  49. Rendl, M., Polak, L., & Fuchs, E. (2008). BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. (Translated from eng). Genes & Development, 22(4), 543–557 (in eng).

    CAS  Google Scholar 

  50. Ito, M., Kizawa, K., Hamada, K., & Cotsarelis, G. (2004). Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. (Translated from eng). Differentiation, 72(9–10), 548–557 (in eng).

    PubMed  Google Scholar 

  51. Hsu, Y. C., Pasolli, H. A., & Fuchs, E. (2011). Dynamics between stem cells, niche, and progeny in the hair follicle. (Translated from eng). Cell, 144(1), 92–105 (in eng).

    PubMed  CAS  Google Scholar 

  52. Enshell-Seijffers, D., Lindon, C., Kashiwagi, M., & Morgan, B. A. (2010). beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. (Translated from eng). Developmental Cell, 18(4), 633–642 (in eng).

    PubMed  CAS  Google Scholar 

  53. Vasioukhin, V., Degenstein, L., Wise, B., & Fuchs, E. (1999). The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proceedings of the National Academy of Sciences of the United States of America, 96(15), 8551–8556.

    PubMed  CAS  Google Scholar 

  54. Ghazizadeh, S., & Taichman, L. B. (2001). Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. (Translated from eng). EMBO Journal, 20(6), 1215–1222 (in eng).

    PubMed  CAS  Google Scholar 

  55. Blanpain, C. (2010). Stem cells: skin regeneration and repair. (Translated from eng). Nature, 464(7289), 686–687 (in eng).

    PubMed  CAS  Google Scholar 

  56. Jaks, V., Kasper, M., & Toftgard, R. (2010). The hair follicle-a stem cell zoo. (Translated from eng). Experimental Cell Research, 316(8), 1422–1428 (in eng).

    PubMed  CAS  Google Scholar 

  57. Sauer, B. (1998). Inducible gene targeting in mice using the Cre/lox system. (Translated from eng). Methods, 14(4), 381–392 (in eng).

    PubMed  CAS  Google Scholar 

  58. Wachsman, G., & Heidstra, R. (2010). The CRE/lox system as a tool for developmental studies at the cell and tissue level. (Translated from eng). Methods in Molecular Biology, 655, 47–64 (in eng).

    PubMed  CAS  Google Scholar 

  59. Soriano, P. (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. (Translated from eng). Nature Genetics, 21(1), 70–71 (in eng).

    PubMed  CAS  Google Scholar 

  60. Saunders, T. L. (2011). Inducible transgenic mouse models. (Translated from eng). Methods in Molecular Biology, 693, 103–115 (in eng).

    PubMed  CAS  Google Scholar 

  61. Capecchi, M. R. (1989). Altering the genome by homologous recombination. (Translated from eng). Science, 244(4910), 1288–1292 (in eng).

    PubMed  CAS  Google Scholar 

  62. Ristevski, S. (2005). Making better transgenic models: conditional, temporal, and spatial approaches. (Translated from eng). Molecular Biotechnology, 29(2), 153–163 (in eng).

    PubMed  CAS  Google Scholar 

  63. Liang, C. C., You, L. R., Chang, J. L., Tsai. T. F., & Chen, C. M. (2009) Transgenic mice exhibiting inducible and spontaneous Cre activities driven by a bovine keratin 5 promoter that can be used for the conditional analysis of basal epithelial cells in multiple organs. (Translated from eng) Journal of Biomedical Science, 16, 2 (in eng).

    Google Scholar 

  64. Zhou, Z., Wang, D., Wang, X. J., & Roop, D. R. (2002). In utero activation of K5.CrePR1 induces gene deletion. (Translated from eng). Genesis, 32(2), 191–192 (in eng).

    PubMed  CAS  Google Scholar 

  65. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L., & Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 118(5), 635–648.

    PubMed  CAS  Google Scholar 

  66. Trempus, C. S., et al. (2003). Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. (Translated from eng). The Journal of Investigative Dermatology, 120(4), 501–511 (in eng).

    PubMed  CAS  Google Scholar 

  67. Morris, R. J., et al. (2004). Capturing and profiling adult hair follicle stem cells. (Translated from eng). Nature Biotechnology, 22(4), 411–417 (in eng).

    PubMed  CAS  Google Scholar 

  68. Jaks, V., et al. (2008). Lgr5 marks cycling, yet long-lived, hair follicle stem cells. (Translated from eng). Nature Genetics, 40(11), 1291–1299 (in eng).

    PubMed  CAS  Google Scholar 

  69. Liu, Y., Lyle, S., Yang, Z., & Cotsarelis, G. (2003). Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. (Translated from eng). The Journal of Investigative Dermatology, 121(5), 963–968 (in eng).

    PubMed  CAS  Google Scholar 

  70. Porter, R. M., et al. (2000). K15 expression implies lateral differentiation within stratified epithelial basal cells. (Translated from eng). Laboratory Investigation, 80(11), 1701–1710 (in eng).

    PubMed  CAS  Google Scholar 

  71. Morgan, B. A. (2008). A glorious revolution in stem cell biology. (Translated from eng). Nature Genetics, 40(11), 1269–1270 (in eng).

    PubMed  CAS  Google Scholar 

  72. Greco, V., et al. (2009). A two-step mechanism for stem cell activation during hair regeneration. (Translated from eng). Cell Stem Cell, 4(2), 155–169 (in eng).

    PubMed  CAS  Google Scholar 

  73. Brownell, I., Guevara, E., Bai, C. B., Loomis, C. A., & Joyner, A. L. (2011). Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. (Translated from eng). Cell Stem Cell, 8(5), 552–565 (in eng).

    PubMed  CAS  Google Scholar 

  74. Jensen, K. B., et al. (2009). Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. (Translated from eng). Cell Stem Cell, 4(5), 427–439 (in eng).

    PubMed  CAS  Google Scholar 

  75. Nijhof, J. G., et al. (2006). The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. (Translated from eng). Development, 133(15), 3027–3037 (in eng).

    PubMed  CAS  Google Scholar 

  76. Snippert, H. J., et al. (2010). Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. (Translated from eng). Science, 327(5971), 1385–1389 (in eng).

    PubMed  CAS  Google Scholar 

  77. Horsley, V., et al. (2006). Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. (Translated from eng). Cell, 126(3), 597–609 (in eng).

    PubMed  CAS  Google Scholar 

  78. Petersson, M., et al. (2011). TCF/Lef1 activity controls establishment of diverse stem and progenitor cell compartments in mouse epidermis. (Translated from Eng) EMBO Journal (in Eng).

  79. Schluter, H., Paquet-Fifield, S., Gangatirkar, P., Li, J., & Kaur, P. (2011). Functional characterisation of quiescent keratinocyte stem cells and their progeny reveals a hierarchical organisation in human skin epidermis. (Translated from Eng) Stem Cells (in Eng).

  80. Ito, M., et al. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. (Translated from eng). Nature Medicine, 11(12), 1351–1354 (in eng).

    PubMed  CAS  Google Scholar 

  81. Levy, V., Lindon, C., Harfe, B. D., & Morgan, B. A. (2005). Distinct stem cell populations regenerate the follicle and interfollicular epidermis. (Translated from eng). Developmental Cell, 9(6), 855–861 (in eng).

    PubMed  CAS  Google Scholar 

  82. Levy, V., Lindon, C., Zheng, Y., Harfe, B. D., & Morgan, B. A. (2007). Epidermal stem cells arise from the hair follicle after wounding. (Translated from eng). The FASEB Journal, 21(7), 1358–1366 (in eng).

    CAS  Google Scholar 

  83. Claudinot, S., Nicolas, M., Oshima, H., Rochat, A., & Barrandon, Y. (2005). Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14677–14682.

    PubMed  CAS  Google Scholar 

  84. Zhang, Y. V., White, B. S., Shalloway, D. I., & Tumbar, T. (2010). Stem cell dynamics in mouse hair follicles: a story from cell division counting and single cell lineage tracing. (Translated from Eng). Cell Cycle, 9(8), 1504–1510 (in Eng).

    PubMed  CAS  Google Scholar 

  85. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K., & Barrandon, Y. (2001). Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell, 104(2), 233–245.

    PubMed  CAS  Google Scholar 

  86. Tumbar, T., et al. (2004). Defining the epithelial stem cell niche in skin. (Translated from eng). Science, 303(5656), 359–363 (in eng).

    PubMed  CAS  Google Scholar 

  87. Lechler, T., & Fuchs, E. (2005). Asymmetric cell divisions promote stratification and differentiation of mammalian skin. (Translated from eng). Nature, 437(7056), 275–280 (in eng).

    PubMed  CAS  Google Scholar 

  88. Bickenbach, J. R. (2005). Isolation, characterization, and culture of epithelial stem cells. (Translated from eng). Methods in Molecular Biology, 289, 97–102 (in eng).

    PubMed  Google Scholar 

  89. Bickenbach, J. R. (1981). Identification and behavior of label-retaining cells in oral mucosa and skin. (Translated from eng) J Dent Res, 60(Spec No C), 1611–1620 (in eng).

    Google Scholar 

  90. Potten, C. S., & Booth, C. (2002). Keratinocyte stem cells: a commentary. (Translated from eng). The Journal of Investigative Dermatology, 119(4), 888–899 (in eng).

    PubMed  CAS  Google Scholar 

  91. Cotsarelis, G., Sun, T. T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. (Translated from eng). Cell, 61(7), 1329–1337 (in eng).

    PubMed  CAS  Google Scholar 

  92. Waghmare, S. K., et al. (2008). Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells. (Translated from eng). EMBO Journal, 27(9), 1309–1320 (in eng).

    PubMed  CAS  Google Scholar 

  93. Sotiropoulou, P. A., Candi, A., & Blanpain, C. (2008). The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation. (Translated from eng). Stem Cells, 26(11), 2964–2973 (in eng).

    PubMed  CAS  Google Scholar 

  94. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T., & Lavker, R. M. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. (Translated from eng). Cell, 102(4), 451–461 (in eng).

    PubMed  CAS  Google Scholar 

  95. Lapouge, G., et al. (2011). Identifying the cellular origin of squamous skin tumors. (Translated from eng). Proceedings of the National Academy of Sciences of the United States of America, 108(18), 7431–7436 (in eng).

    PubMed  CAS  Google Scholar 

  96. Youssef, K. K., et al. (2010). Identification of the cell lineage at the origin of basal cell carcinoma. (Translated from eng). Nature Cell Biology, 12(3), 299–305 (in eng).

    PubMed  CAS  Google Scholar 

  97. White, A. C., et al. (2011). Defining the origins of Ras/p53-mediated squamous cell carcinoma. (Translated from eng). Proceedings of the National Academy of Sciences of the United States of America, 108(18), 7425–7430 (in eng).

    PubMed  CAS  Google Scholar 

  98. Fujiwara, H., et al. (2011). The basement membrane of hair follicle stem cells is a muscle cell niche. (Translated from eng). Cell, 144(4), 577–589 (in eng).

    PubMed  CAS  Google Scholar 

  99. Morgan, B. A. (2011). Developmental biology: a hair-raising tale. (Translated from eng). Nature, 471(7340), 586–587 (in eng).

    PubMed  CAS  Google Scholar 

  100. Blanpain, C., Mohrin, M., Sotiropoulou, P. A., & Passegue, E. (2011). DNA-damage response in tissue-specific and cancer stem cells. (Translated from eng). Cell Stem Cell, 8(1), 16–29 (in eng).

    PubMed  CAS  Google Scholar 

  101. Sotiropoulou, P. A., et al. (2010). Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. (Translated from eng). Nature Cell Biology, 12(6), 572–582 (in eng).

    PubMed  CAS  Google Scholar 

  102. Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. (Translated from eng). Science, 327(5965), 542–545 (in eng).

    PubMed  CAS  Google Scholar 

  103. Knoblich, J. A. (2010). Asymmetric cell division: recent developments and their implications for tumour biology. (Translated from eng). Nature Reviews Molecular Cell Biology, 11(12), 849–860 (in eng).

    PubMed  CAS  Google Scholar 

  104. Schlegelmilch, K., et al. (2011). Yap1 acts downstream of alpha-catenin to control epidermal proliferation. (Translated from eng). Cell, 144(5), 782–795 (in eng).

    PubMed  CAS  Google Scholar 

  105. Jones, P. H., Simons, B. D., & Watt, F. M. (2007). Sic transit gloria: farewell to the epidermal transit amplifying cell? (Translated from eng). Cell Stem Cell, 1(4), 371–381 (in eng).

    PubMed  CAS  Google Scholar 

  106. Festa, E., et al. (2011). Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. (Translated from eng). Cell, 146(5), 761–771 (in eng).

    PubMed  CAS  Google Scholar 

  107. Dyson, F. (2004). How one intuitive physicist rescued a team from fruitless research. Nature, 427(297).

  108. Williams, S. E., Beronja, S., Pasolli, H. A., & Fuchs, E. (2011). Asymmetric cell divisions promote Notch-dependent epidermal differentiation. (Translated from eng). Nature, 470(7334), 353–358 (in eng).

    PubMed  CAS  Google Scholar 

  109. Ray, S., & Lechler, T. (2011). Regulation of asymmetric cell divisions in the epidermis. (Translated from Eng) Cell Division, 6(1), 12 (in Eng).

    Google Scholar 

  110. Poulson, N. D., & Lechler, T. (2010). Robust control of mitotic spindle orientation in the developing epidermis. (Translated from eng). The Journal of Cell Biology, 191(5), 915–922 (in eng).

    PubMed  CAS  Google Scholar 

  111. Zwaka, T. P., & Thomson, J. A. (2005). Differentiation of human embryonic stem cells occurs through symmetric cell division. (Translated from eng). Stem Cells, 23(2), 146–149 (in eng).

    PubMed  Google Scholar 

  112. Yamanaka, S., & Blau, H. M. (2010). Nuclear reprogramming to a pluripotent state by three approaches. (Translated from eng). Nature, 465(7299), 704–712 (in eng).

    PubMed  CAS  Google Scholar 

  113. Mannik, J., Alzayady, K., & Ghazizadeh, S. (2010). Regeneration of multilineage skin epithelia by differentiated keratinocytes. (Translated from eng). The Journal of Investigative Dermatology, 130(2), 388–397 (in eng).

    PubMed  CAS  Google Scholar 

  114. Brawley, C., & Matunis, E. (2004). Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science, 304(5675), 1331–1334.

    PubMed  CAS  Google Scholar 

  115. Kai, T., & Spradling, A. (2004). Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature, 428(6982), 564–569.

    PubMed  CAS  Google Scholar 

  116. Nowak, J. A., Polak, L., Pasolli, H. A., & Fuchs, E. (2008). Hair follicle stem cells are specified and function in early skin morphogenesis. (Translated from eng). Cell Stem Cell, 3(1), 33–43 (in eng).

    PubMed  CAS  Google Scholar 

  117. Rhee, H., Polak, L., & Fuchs, E. (2006). Lhx2 maintains stem cell character in hair follicles. (Translated from eng). Science, 312(5782), 1946–1949 (in eng).

    PubMed  CAS  Google Scholar 

  118. Osorio, K. M., Lilja, K. C., & Tumbar, T. (2011). Runx1 modulates adult hair follicle stem cell emergence and maintenance from distinct embryonic skin compartments. (Translated from eng). The Journal of Cell Biology, 193(1), 235–250 (in eng).

    PubMed  CAS  Google Scholar 

  119. Samokhvalov, I. M., Samokhvalova, N. I., & Nishikawa, S. (2007). Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. (Translated from eng). Nature, 446(7139), 1056–1061 (in eng).

    PubMed  CAS  Google Scholar 

  120. Legue, E., Sequeira, I., & Nicolas, J. F. (2010). Hair follicle renewal: authentic morphogenesis that depends on a complex progression of stem cell lineages. (Translated from eng). Development, 137(4), 569–577 (in eng).

    PubMed  CAS  Google Scholar 

  121. Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H., & Fuchs, E. (2008). NFATc1 balances quiescence and proliferation of skin stem cells. (Translated from eng). Cell, 132(2), 299–310 (in eng).

    PubMed  CAS  Google Scholar 

  122. DasGupta, R., & Fuchs, E. (1999). Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. (Translated from eng). Development, 126(20), 4557–4568 (in eng).

    PubMed  CAS  Google Scholar 

  123. Vidal, V. P., et al. (2005). Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. (Translated from eng). Current Biology, 15(15), 1340–1351 (in eng).

    PubMed  CAS  Google Scholar 

  124. Hoi, C. S., et al. (2010). Runx1 directly promotes proliferation of hair follicle stem cells and epithelial tumor formation in mouse skin. (Translated from eng). Molecular and Cellular Biology, 30(10), 2518–2536 (in eng).

    PubMed  CAS  Google Scholar 

  125. Osorio, K. M., et al. (2008). Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation. (Translated from eng). Development, 135(6), 1059–1068 (in eng).

    PubMed  CAS  Google Scholar 

  126. Raveh, E., et al. (2006). Dynamic expression of Runx1 in skin affects hair structure. (Translated from eng). Mechanisms of Development, 123(11), 842–850 (in eng).

    PubMed  CAS  Google Scholar 

  127. Merrill, B. J., Gat, U., DasGupta, R., & Fuchs, E. (2001). Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. (Translated from eng). Genes & Development, 15(13), 1688–1705 (in eng).

    CAS  Google Scholar 

  128. North, T., et al. (1999). Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. (Translated from eng). Development, 126(11), 2563–2575 (in eng).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank the members of the Tumbar laboratory, and especially Song Eun Lee, for critical reading of this manuscript. This work was funded in part by grants from NIH/NIAHMS RO1AR053201 and NYSTEM C024354.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tudorita Tumbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tumbar, T. Ontogeny and Homeostasis of Adult Epithelial Skin Stem Cells. Stem Cell Rev and Rep 8, 561–576 (2012). https://doi.org/10.1007/s12015-012-9348-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9348-9

Keywords

Navigation