Skip to main content
Log in

Towards the Generation of Patient-Specific Patches for Cardiac Repair

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cardiovascular diseases represent the main cause of morbidity and mortality worldwide. Millions of people are affected by such diseases in the industrialized countries, with hundreds of thousands new cases diagnosed every year. Among cardiac diseases, heart failure is the most common end-stage pathology, leading to impaired cardiac output and cardiac performance as a result of the irreversible loss of contractile cardiomyocytes. Tissue engineering holds the promise to provide personalized solutions to the problem of cardiac muscle repair. Indeed, the identification of little reservoirs of stem and progenitor cells within every body district opened new perspectives to the setup of patient-specific protocols for cardiac diseases. Nonetheless, the results of the first pre-clinical and clinical trials in which adult stem/progenitor cells were adopted pointed at the route of delivery to the injured organ as well as at the cell source as the main issues for cardiac tissue engineers. In fact, when adult stem cells were directly injected into the myocardium or delivered through bloodstream to the heart, no or few cells could be found engrafted within host tissue few days after the administration. Renewed enthusiasm was generated by the techniques set up to enrich cardiomyocytes obtained by embryonic stem cells and by the recent disclosure of the protocols to obtain reprogrammed pluripotent cells or reprogrammed cardiomyocytes out of patients’ own somatic cells. In this context, additional efforts to setup efficient systems to deliver stem cells to the injured site are required. The application of forefront technologies to fabricate synthetic and hybrid scaffolds to be employed as cell delivery systems and the acknowledgement that surface physical, mechanical, chemical properties can exert specific effects on stem cells per se prompted new enthusiasm in the field. In this respect, a cardiac-specific scaffold should be able to comply with cardiac muscle architecture, be deformable as to indulge and possibly sustain cardiac contraction. As expected, such a scaffold should favor stem cell electromechanical coupling with host tissue, while promoting the vascularization of the newly-formed tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amado, L., Saliaris, A., Schuleri, K., St. John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogenic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102, 11474–11479.

    Article  CAS  PubMed  Google Scholar 

  2. American Heart Association. (2010). Heart disease and stroke statistics-2010 update. Dallas, Texas: American Heart Association. © 2010, American Heart Association.

  3. Anokye-Danso, F., Trivedi, C. M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8, 376–388.

    Article  CAS  PubMed  Google Scholar 

  4. Arauchi, A., Shimizu, T., Yamato, M., Obara, T., & Okano, T. (2009). Tissue-engineered thyroid cell sheet rescued hypothyroidism in rat models after receiving total thyroidectomy comparing with nontransplantation models. Tissue Engineering. Part A, 15, 3943–3949.

    Article  CAS  PubMed  Google Scholar 

  5. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor cells for angiogenesis. Science, 275, 964–967.

    Article  CAS  PubMed  Google Scholar 

  6. Badylak, S. F., Freytes, D. O., & Gilbert, T. W. (2009). Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia, 5, 1–13.

    Article  CAS  PubMed  Google Scholar 

  7. Badylak, S. F., Obermiller, J., Geddes, L., & Matheny, R. (2002). Extracellular matrix for myocardial repair. The Heart Surgery Forum, 6, E20–E26.

    Google Scholar 

  8. Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ishaemic myocardium. Nature, 428, 668–673.

    Article  CAS  PubMed  Google Scholar 

  9. Bartunek, J., Vanderheyden, M., Vandekerckhove, B., Mansour, S., De Bruyne, B., De Bondt, P., et al. (2005). Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: Feasibility and safety. Circulation, 112, 178–183.

    Google Scholar 

  10. Bearzi, C., Rota, M., Hosoda, T., Tillmanns, J., Nascimbene, A., De Angelis, A., et al. (2007). Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 14068–14073.

    Article  CAS  PubMed  Google Scholar 

  11. Beltrami, A. P., Cesselli, D., Bergamini, N., Marcon, P., Rigo, S., Puppato, E., et al. (2007). Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood, 110, 3438–3446.

    Article  CAS  PubMed  Google Scholar 

  12. Beltrami, A. P., Urbanek, K., Kajstura, J., Yan, S. M., Finato, N., Bussani, R., et al. (2001). Evidence that human cardiac myocytes divide after myocardial infarction. The New England Journal of Medicine, 344, 1750–1757.

    Article  CAS  PubMed  Google Scholar 

  13. Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabé-Heider, F., Walsh, S., et al. (2009). Evidence for Cardiomyocyte renewal in humans. Science, 324, 98–102.

    Article  CAS  PubMed  Google Scholar 

  14. Braunwald, E., & Pfeffer, M. A. (1991). Ventricular enlargement and remodeling following acute myocardial infarction: Mechanisms and management. The American Journal of Cardiology, 68, 1D–6D.

    Article  CAS  PubMed  Google Scholar 

  15. Bui, Q. T., Gertz, Z. M., & Wilensky, R. L. (2010). Intracoronary delivery of bone-marrow-derived stem cells. Stem Cell Research and Therapy, 1, 29–35.

    Article  PubMed  Google Scholar 

  16. Bursac, N., Loo, Y., Leong, K., & Tung, L. (2007). Novel anisotropic engineered cardiac tissues: Studies of electrical propagation. Biochemical and Biophysical Research Communications, 361, 847–853.

    Article  CAS  PubMed  Google Scholar 

  17. Bursac, N., Papadaki, M., White, J. A., Eisenberg, S. R., Vunjak-Novakovic, G., & Freed, L. E. (2003). Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Engineering, 9, 1243–1253.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, G., & Hoffman, A. S. (1995). Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature, 373, 49–52.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, Q. Z., Ishii, H., Thouas, G. A., Lyon, A. R., Wright, J. S., Blaker, J. J., et al. (2010). An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials, 31, 3885–3893.

    Article  CAS  PubMed  Google Scholar 

  20. Davis, M. E., Hsieh, P. C., Takahashi, T., Song, Q., Zhang, S., Kamm, R. D., et al. (2006). Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 103, 8155–8160.

    Article  CAS  PubMed  Google Scholar 

  21. Di Nardo, P., Forte, G., Ahluwalia, A., & Minieri, M. (2010). Cardiac progenitor cells: Potency and control. Journal of Cellular Physiology, 224, 590–600.

    Article  PubMed  Google Scholar 

  22. Dixon, J. A., Gorman, R. C., Stroud, R. E., Bouges, S., Hirotsugu, H., Gorman, J. H., III, et al. (2009). Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction. Circulation, 120, S220–S229.

    Article  CAS  PubMed  Google Scholar 

  23. Ebara, M., Hoffman, J. M., Hoffman, A. S., & Stayton, P. S. (2006). Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels. Lab on a Chip, 6, 843–848.

    Article  CAS  PubMed  Google Scholar 

  24. Ebara, M., Yamato, M., Aoyagi, T., Kikuchi, A., Sakai, K., & Okano, T. (2004). Immobilization of cell adhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and non-invasive cell harvest. Tissue Engineering, 10, 1125–1135.

    CAS  PubMed  Google Scholar 

  25. Ebara, M., Yamato, M., Hirose, M., Aoyagi, T., Kikuchi, A., Sakai, K., et al. (2003). Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules, 4, 344–349.

    Article  CAS  PubMed  Google Scholar 

  26. Engelmayr, G. C., Jr., Cheng, M., Bettinger, C. J., Borenstein, J. T., Langer, R., & Freed, L. E. (2008). Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 7, 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  27. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.

    Article  CAS  PubMed  Google Scholar 

  28. Esteban, M. A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6, 71–79.

    Article  CAS  PubMed  Google Scholar 

  29. Ferreira, L. S., Gerecht, S., Shieh, H. F., Watson, N., Rupnick, M. A., Dallabrida, S. M., et al. (2007). Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circulation Research, 101, 286–294.

    Article  CAS  PubMed  Google Scholar 

  30. Fischer-Rasokat, U., Assmus, B., Assmus, B., Seeger, F. H., Honold, J., Leistner, D., et al. (2009). A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemicdilated cardiomyopathy: Final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circulation: Heart Failure, 2, 417–423.

    Article  CAS  PubMed  Google Scholar 

  31. Food and Drug Administration 21 CFR 1271 (2006).

  32. Formigli, L., Francini, F., Tani, A., Squecco, R., Nosi, D., Polidori, L., et al. (2005). Morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture is favoured by direct cell-cell contacts and relaxin treatment. American Journal of Physiology. Cell Physiology, 288, C795–C804.

    Article  CAS  PubMed  Google Scholar 

  33. Forte, G., Carotenuto, F., Pagliari, F., Pagliari, S., Cossa, P., Fiaccavento, R., et al. (2008). Criticatility of the biological and physical stimuli array inducing resident stem cell determination. Stem Cells, 26, 2093–2103.

    Article  CAS  PubMed  Google Scholar 

  34. Forte, G., Franzese, O., Pagliari, S., Pagliari, F., Cossa, P., Laudisi, A., et al. (2009). Interfacing Sca-1pos Mesenchymal stem cells with biocompatible scaffolds with different chemical composition and geometry. Journal of Biomedicine and Biotechnology. doi:10.1155/2009/910610.

  35. Forte, G., Minieri, M., Cossa, P., Antenucci, D., Sala, M., Gnocchi, V., et al. (2006). Hepatocyte growth factor effects on mesenchymal stem cells: Proliferation, migration, and differentiation. Stem Cells, 24, 23–33.

    Article  CAS  PubMed  Google Scholar 

  36. Foudah, D., Redaelli, S., Donzelli, E., Bentivegna, A., Miloso, M., Dalprà, L., et al. (2009). Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells. Chromosome Research, 17, 1025–1039.

    Article  CAS  PubMed  Google Scholar 

  37. Fujiwara, M., Yan, P., Otsuji, T. G., Narazaki, G., Uosaki, H., Fukushima, H., et al. (2011). Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A. PLoS One, 6, e16734.

    Article  CAS  PubMed  Google Scholar 

  38. Furth, M. E., Atala, A., & Van Dyke, M. E. (2007). Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials, 28, 5068–5073.

    Article  CAS  PubMed  Google Scholar 

  39. Gajarsa, J. J., & Kloner, R. A. (2010). Left ventricular remodeling in the post-infarction heart: A review of cellular, molecular mechanisms, and therapeutic modalities. Heart Failure Reviews. doi:10.1007/s10741-010-9181-7.

  40. Gao, J., Dennis, J. E., Muzic, R. F., Lundberg, M., & Caplan, L. (2001). The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells, Tissues, Organs, 169, 12–20.

    Article  CAS  PubMed  Google Scholar 

  41. Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27, 3675–3683.

    CAS  PubMed  Google Scholar 

  42. Godier-Furnémont, A. F., Martens, T. P., Koeckert, M. S., Wan, L., Parks, J., Arai, K., et al. (2011). Composite scaffold provides a cell delivery platform for cardiovascular repair. Proceedings of the National Academy of Sciences of the United States of America, 108, 7974–7979.

    Article  PubMed  Google Scholar 

  43. Hata, H., Matsumiya, G., Miyagawa, S., Kondoh, H., Kawaguchi, N., Matsuura, N., et al. (2009). Grafted skeletal myoblasts sheets attenuate myocardial remodelling in pacing-induced canine heart failure model. The Journal of Thoracic and Cardiovascular Surgery, 138, 460–467.

    Article  Google Scholar 

  44. Hertz, M. I., Aurora, P., Christie, J. D., Dobbels, F., Edwards, L. B., Kirk, R., et al. (2009). Scientific registry of the international society for heart and lung transplantation. The Journal of Heart and Lung Transplantation, 28, 989–1049.

    Article  PubMed  Google Scholar 

  45. Hoshiba, T., Kawazoe, N., Tateishi, T., & Chen, G. (2010). Development of extracellular matrices mimicking stepwise adipogenesis of mesenchymal stem cells. Advanced Materials, 10, 1717–1728.

    CAS  Google Scholar 

  46. Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., et al. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142, 375–386.

    Article  CAS  PubMed  Google Scholar 

  47. Itzhaki-Alfia, A., Leor, J., Raanani, E., Sternik, L., Spiegelstein, D., Netser, S., et al. (2009). Patient characteristics and cell source determine the number of isolated human cardiac progenitor cells. Circulation, 120, 2559–2566.

    Article  PubMed  Google Scholar 

  48. Judson, R. L., Babiarz, J. E., Venere, M., & Blelloch, R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnology, 27, 459–461.

    Article  CAS  PubMed  Google Scholar 

  49. Kelly, D. J., Rosen, A. B., Schuldt, A. J. T., Doronin, S. V., Potapova, I. A., Azeloglu, E. U., et al. (2009). Increased myocyte content and mechanical function within a tissue-engineered myocardial patch following implantation. Tissue Engineering. Part A, 15, 2189–2201.

    Article  CAS  PubMed  Google Scholar 

  50. Kim, D. H., Lipke, E. A., Kim, P., Cheong, R., Thompson, S., Delannoy, M., et al. (2010). Nanoscalecues regulate the structure and function of macroscopic cardiac tissue constructs. Proceedings of the National Academy of Sciences of the United States of America, 107, 565–570.

    Article  CAS  PubMed  Google Scholar 

  51. Kochupura, P. V., Azeloglu, E. U., Kelly, D. J., Doronin, S. V., Badylak, S. F., Krukenkamp, I. B., et al. (2005). Tissue engineered myocardial patch derived from extracellular matrix provides regional mechanical function. Circulation, 112, I144–I149.

    PubMed  Google Scholar 

  52. Kofidis, T., Lebl, D. R., Swijnenburg, R. J., Greeve, J. M., Klima, U., & Robbins, R. C. (2006). Allopurinol/uricase and ibuprofen enhance engraftment of cardiomyocyte-enriched human embryonic stem cells and improve cardiac function following myocardial injury. European Journal of Cardio-Thoracic Surgery, 29, 50–55.

    Article  PubMed  Google Scholar 

  53. Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytesderived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.

    Article  CAS  PubMed  Google Scholar 

  54. Leor, J., Gerecht, S., Cohen, S., Miller, L., Holbova, R., Ziskind, A., et al. (2007). Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart, 93, 1278–1284.

    Article  PubMed  Google Scholar 

  55. Levenberg, S., Ferreira, L. S., Chen-Konak, L., Kraehenbuehl, T. P., & Langer, R. (2010). Isolation, differentiation and characterization of vascular cells derived from human embryonic stem cells. Nature Protocols, 5, 1115–1126.

    Article  CAS  PubMed  Google Scholar 

  56. Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., & Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 4391–4396.

    Article  CAS  PubMed  Google Scholar 

  57. Mandoli, C., Pagliari, F., Pagliari, S., Forte, G., Di Nardo, P., Licoccia, S., et al. (2010). Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Advanced Functional Materials, 20, 1617–1624.

    Article  CAS  Google Scholar 

  58. Martin, M. J., Muotri, A., Gage, F., & Varki, A. (2005). Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine, 11, 228–232.

    Article  CAS  PubMed  Google Scholar 

  59. Masuda, S., Shimizu, T., Yamato, M., & Okano, T. (2008). Cell sheet engineering for heart tissue repair. Advanced Drug Delivery Reviews, 60, 277–285.

    Article  CAS  PubMed  Google Scholar 

  60. Matsuura, K., Honda, A., Nagai, T., Fukushima, N., Iwanaga, K., Tokunaga, M., et al. (2009). Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. The Journal of Clinical Investigation, 119, 2204–2217.

    CAS  PubMed  Google Scholar 

  61. Mauritz, C., Schwanke, K., Reppel, M., Neef, S., Katsirntaki, K., Maier, L. S., et al. (2008). Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118, 507–517.

    Article  PubMed  Google Scholar 

  62. Menasché, P., Alfieri, O., Janssens, S., McKenna, W., Reichenspurner, H., Trinquart, L., et al. (2008). The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: First randomized placebo-controlled study of myoblast transplantation. Circulation, 117, 1189–1200.

    Article  PubMed  Google Scholar 

  63. Menei, P., Montero-Menei, C., Venier, M. C., & Benoit, J. P. (2005). Drug delivery into the brain using poly(lactide-co-glycolide) microspheres. Expert Opinion on Drug Delivery, 2, 363–376.

    Article  CAS  PubMed  Google Scholar 

  64. Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Natural Medicine, 12, 459–465.

    Article  CAS  Google Scholar 

  65. Momin, E. N., Vela, G., Zaidi, H. A., & Quiñones-Hinojosa, A. (2010). The oncogenic potential of mesenchymal stem cells in the treatment of cancer: Directions for future research. Current Immunology Reviews, 6, 137–148.

    Article  CAS  PubMed  Google Scholar 

  66. Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664–668.

    Article  CAS  PubMed  Google Scholar 

  67. Nakagawa, M., Takizawa, N., Narita, M., Ichisaka, T., & Yamanaka, S. (2010). Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences of the United States of America, 107, 14152–14157.

    Article  CAS  PubMed  Google Scholar 

  68. Nesselmann, C., Ma, N., Bieback, K., Wagner, W., Ho, A., Konttinen, Y. T., et al. (2008). Mesenchymal stem cells and cardiac repair. Journal of Cellular and Molecular Medicine, 12, 1795–1810.

    Article  CAS  PubMed  Google Scholar 

  69. Regulation (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004.

  70. Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. The FASEB Journal, 21, 1345–1357.

    Article  CAS  Google Scholar 

  71. Okita, K., & Yamanaka, S. (2010). Induction of pluripotency by defined factors. Experimental Cell Research, 316, 2565–2570.

    Article  CAS  PubMed  Google Scholar 

  72. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 221–229.

    Article  Google Scholar 

  73. Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., et al. (2001). Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proceedings of the National Academy of the United States of America, 98, 10344–10349.

    Article  CAS  Google Scholar 

  74. Ota, T., Gilbert, T. W., Badylak, S. F., Schwartzman, D., & Zenati, M. A. (2007). Electromechanical characterization of a tissue engineered myocardial patch derived from extracellular matrix. The Journal of Thoracic and Cardiovascular Surgery, 133, 979–985.

    Article  PubMed  Google Scholar 

  75. Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., et al. (2008). Perfusion-decellularized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14, 213–221.

    Article  CAS  PubMed  Google Scholar 

  76. Pagliari, S., Vilela-Silva, A. C., Forte, G., Pagliari, F., Mandoli, C., Vozzi, G., et al. (2010). Cooperation of biological and mechanical signals in cardiac progenitor cell differentiation. Advanced Materials, 23, 514–518.

    Article  PubMed  Google Scholar 

  77. Perin, E. C., & Lopez, J. (2006). Methods in stem cell delivery in cardiac diseases. Nature Clinical Practice Cardiovascular Medicine, 3, S1.

    Article  Google Scholar 

  78. Pietronave, S., Forte, G., Locarno, D., Merlin, S., Zamperone, A., Nicotra, G., et al. (2010). Agonist monoclonal antibodies against HGF receptor protect cardiac muscle cells from apoptosis. American Journal of Physiology - Heart and Circulatory Physiology, 298, H1155–H1165.

    Article  CAS  PubMed  Google Scholar 

  79. Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B., et al. (2002). Chimerism of the transplanted heart. New England Journal of Medicine, 346, 5–15.

    Article  PubMed  Google Scholar 

  80. Radisic, M., Fast, V. G., Sharifov, O. F., Iyer, R. K., Park, H., & Vunjak-Novakovic, G. (2009). Optical mapping of impulse propagation in engineered cardiac tissue. Tissue Engineering. Part A, 15, 851–860.

    Article  CAS  PubMed  Google Scholar 

  81. Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101, 18129–18134.

    Article  CAS  PubMed  Google Scholar 

  82. Reinecke, H., Minami, E., Poppa, V., & Murry, C. E. (2004). Evidence for fusion between cardiac and skeletal muscle cells. Circulation Research, 94, e56–e60.

    Article  CAS  PubMed  Google Scholar 

  83. Reing, J. E., Brown, B. N., Daly, K. A., Freund, J. M., Gilbert, T. W., Hsiong, S. X., et al. (2010). The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials, 31, 8626–8633.

    Article  CAS  PubMed  Google Scholar 

  84. Robinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A., et al. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112, I135–I143.

    Article  PubMed  Google Scholar 

  85. Rota, M., Kajstura, J., Hosoda, T., Bearzi, C., Vitale, S., Esposito, G., et al. (2007). Bone marrow cells adopt the cardiomyogenic fate in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 17783–17788.

    Article  CAS  PubMed  Google Scholar 

  86. Singelyn, J. M., & Christman, K. L. (2010). Injectable materials for the treatment of myocardial infarction and heart failure: The promise of decellularized matrices. Journal of Cardiovascular Translational Research, 3, 478–486.

    Article  PubMed  Google Scholar 

  87. Smits, A. M., van Vliet, P., Metz, C. H., Korfage, T., Sluijter, J. P. G., Doevendans, P. A., et al. (2009). Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: An in vitro model for studying human cardiac physiology and pathophysiology. Nature Protocols, 4, 232–243.

    Article  CAS  PubMed  Google Scholar 

  88. Song, H., Yoon, C., Kattman, S. J., Dengler, J., Massé, S., ThushaanthiniThavaratnam, T., et al. (2010). Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proceedings of the National Academy of Sciences of the United States of America, 103, 3329–3334.

    Article  Google Scholar 

  89. Suarez-Alvarez, B., Rodriguez, R. M., Calvanese, V., Blanco-Gelaz, M. A., Suhr, S. T., Ortega, F., et al. (2010). Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells. PLoS One, 5, e10192.

    Article  PubMed  Google Scholar 

  90. Sumide, T., Nishida, K., Yamato, M., Ide, T., Hayashida, Y., Watanabe, K., et al. (2006). Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. The FASEB Journal, 20, 392–394.

    CAS  Google Scholar 

  91. Tomescot, A., Leschik, J., Bellamy, V., Dubois, G., Messas, E., Bruneval, P., et al. (2007). Differentiation in vivo of cardiac committed human embryonic stem cells in postmyocardial infarcted rats. Stem Cells, 25, 2200–2205.

    Article  CAS  PubMed  Google Scholar 

  92. Tulloch, N. L., Muskheli, V., Razumova, M. V., Korte, F. S., Regnier, M., Hauch, K. D., et al. (2011). Growth of engineered human myocardium with mechanical loading and vascular coculture. Circulation Research, 109, 47–59.

    Article  CAS  PubMed  Google Scholar 

  93. Vacanti, V., Kong, E., Suzuki, G., Sato, K., Canty, & J. M., Lee, T. (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. Journal of Cellular Physiology, 194–201.

  94. Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., et al. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16, 169–187.

    Article  PubMed  Google Scholar 

  95. Wagers, A. J., Sherwood, R. I., Christensen, J. L., & Weissman, I. L. (2002). Little evidence for developmental plasticity of adult hematopoietic stem cells. Science, 297, 2256–2259.

    Article  CAS  PubMed  Google Scholar 

  96. Yacoub, M. H., & Takkenberg, J. J. M. (2005). Will heart valve tissue engineering change the world? Nature Clinical Practice Cardiovascular Medicine, 2, 60–61.

    Article  CAS  PubMed  Google Scholar 

  97. Yamanaka, S., & Blau, H. M. (2010). Nuclear reprogramming to a pluripotent state by three approaches. Nature, 465, 704–712.

    Article  CAS  PubMed  Google Scholar 

  98. Yu, J., Du, K. T., Fang, Q., Gu, Y., Mihardja, S. S., Sievers, R. E., et al. (2010). The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials, 31, 7012–7020.

    Article  CAS  PubMed  Google Scholar 

  99. Zakharova, L., Mastroeni, D., Mutlu, N., Molina, M., Goldman, S., Diethrich, E., et al. (2010). Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovascular Research, 87, 40–49.

    Article  CAS  PubMed  Google Scholar 

  100. Zhao, T., Zhang, Z. N., Rong, Z., Xu, Y. (2011) Immunogenicity of induced pluripotent stem cells. doi:10.1038/nature10135.

  101. Zimmermann, W. H., Melnychenko, I., Wasmeier, G., Didié, M., Naito, H., Nixdorff, U., et al. (2006). Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Medicine, 12, 452–458.

    Article  CAS  PubMed  Google Scholar 

  102. Zimmermann, W. H., Schneiderbanger, K., Schubert, P., Didié, M., Münzel, F., Heubach, J. F., et al. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90, 223–230.

    Article  CAS  PubMed  Google Scholar 

  103. Zwi, L., Caspi, O., Arbel, G., Huber, I., Gepstein, A., Park, I. H., et al. (2009). Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation, 120, 1513–1523.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Forte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forte, G., Pagliari, S., Pagliari, F. et al. Towards the Generation of Patient-Specific Patches for Cardiac Repair. Stem Cell Rev and Rep 9, 313–325 (2013). https://doi.org/10.1007/s12015-011-9325-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9325-8

Keywords

Navigation