Skip to main content

Advertisement

Log in

Phosphoproteomic Analysis: An Emerging Role in Deciphering Cellular Signaling in Human Embryonic Stem Cells and Their Differentiated Derivatives

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cellular signaling is largely controlled by protein phosphorylation. This post-translational modification (PTM) has been extensively analyzed when examining one or a few protein phosphorylation events that effect cell signaling. However, protein kinase-driven signaling networks, comprising total (phospho)proteomes, largely control cell fate. Therefore, large-scale analysis of differentially regulated protein phosphorylation is central to elucidating complex cellular events, including maintenance of pluripotency and differentiation of embryonic stem cells (ESCs). The current technology of choice for total phosphoproteome and combined total proteome plus total phosphoproteome (termed (phospho)proteome) [1] analyses is multidimensional liquid chromatography- (MDLC) tandem mass spectrometry (MS/MS). Advances in the use of MDLC for separation of peptides comprising total (phospho)proteomes, phosphopeptide enrichment, separation of enriched fractions, and quantitative peptide identification by MS/MS have been rapid in recent years, as have improvements in the sensitivity, speed, and accuracy of mass spectrometers. Increasingly deep coverage of (phospho)proteomes is allowing an improved understanding of changes in protein phosphorylation networks as cells respond to stimuli and progress from one undifferentiated or differentiated state to another. Although MDLC-MS/MS studies are powerful, understanding the interpretation of the data is important, and targeted experimental pursuit of biological predictions provided by total (phospho)proteome analyses is needed. (Phospho)proteomic analyses of pluripotent stem cells are in their infancy at this time. However, such studies have already begun to contribute to an improved and accelerated understanding of basic pluripotent stem cell signaling and fate control, especially at the systems-biology level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van Hoof, D., Munoz, J., Braam, S. R., et al. (2009). Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell, 5, 214–226.

    PubMed  Google Scholar 

  2. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    PubMed  CAS  Google Scholar 

  3. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    PubMed  CAS  Google Scholar 

  4. Boyer, L. A., Lee, T. I., Cole, M. F., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956.

    PubMed  CAS  Google Scholar 

  5. Brandenberger, R., Wei, H., Zhang, S., et al. (2004). Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nature Biotechnology, 22, 707–716.

    PubMed  Google Scholar 

  6. Grskovic, M., & Ramalho-Santos, M. (2008). The pluripotent transcriptome. In: StemBook. Cambridge (MA): Harvard Stem Cell Institute.

  7. Sato, N., Sanjuan, I. M., Heke, M., Uchida, M., Naef, F., & Brivanlou, A. H. (2003). Molecular signature of human embryonic stem cells and its comparison with the mouse. Developmental Biology, 260, 404–413.

    PubMed  CAS  Google Scholar 

  8. Sperger, J. M., Chen, X., Draper, J. S., et al. (2003). Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proceedings of the National Academy of Sciences of the United States of America, 100, 13350–13355.

    PubMed  CAS  Google Scholar 

  9. Bendall, S. C., Stewart, M. H., Menendez, P., et al. (2007). IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 448, 1015–1021.

    PubMed  CAS  Google Scholar 

  10. Brill, L. M., Xiong, W., Lee, K. B., et al. (2009). Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell, 5, 204–213.

    PubMed  CAS  Google Scholar 

  11. James, D., Levine, A. J., Besser, D., & Hemmati-Brivanlou, A. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132, 1273–1282.

    PubMed  CAS  Google Scholar 

  12. Pebay, A., Wong, R. C., Pitson, S. M., et al. (2005). Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells, 23, 1541–1548.

    PubMed  CAS  Google Scholar 

  13. Rigbolt, K. T., Prokhorova, T. A., Akimov, V., et al. (2011). System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Science Signal, 4, rs3.

    Google Scholar 

  14. Wang, J., Rao, S., Chu, J., et al. (2006). A protein interaction network for pluripotency of embryonic stem cells. Nature, 444, 364–368.

    PubMed  CAS  Google Scholar 

  15. Wang, L., Schulz, T. C., Sherrer, E. S., et al. (2007). Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood, 110, 4111–4119.

    PubMed  CAS  Google Scholar 

  16. Xu, R. H., Peck, R. M., Li, D. S., Feng, X., Ludwig, T., & Thomson, J. A. (2005). Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nature Methods, 2, 185–190.

    PubMed  CAS  Google Scholar 

  17. Yao, S., Chen, S., Clark, J., et al. (2006). Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proceedings of the National Academy of Sciences of the United States of America, 103, 6907–6912.

    PubMed  CAS  Google Scholar 

  18. Braconi Quintaje, S., & Orchard, S. (2008). The annotation of both human and mouse kinomes in UniProtKB/Swiss-Prot: one small step in manual annotation, one giant leap for full comprehension of genomes. Molecular & Cellular Proteomics: MCP, 7, 1409–1419.

    Google Scholar 

  19. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298, 1912–1934.

    PubMed  CAS  Google Scholar 

  20. Pera, M. F., & Tam, P. P. (2010). Extrinsic regulation of pluripotent stem cells. Nature, 465, 713–720.

    PubMed  CAS  Google Scholar 

  21. Watabe, T., & Miyazono, K. (2009). Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Research, 19, 103–115.

    PubMed  CAS  Google Scholar 

  22. Katoh, M. (2007). Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Reviews, 3, 30–38.

    PubMed  CAS  Google Scholar 

  23. Kim, J. B., Zaehres, H., Arauzo-Bravo, M. J., & Scholer, H. R. (2009). Generation of induced pluripotent stem cells from neural stem cells. Nature Protocols, 4, 1464–1470.

    PubMed  CAS  Google Scholar 

  24. Maekawa, M., Yamaguchi, K., Nakamura, T., et al. (2011). Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature, 474, 225–229.

    PubMed  CAS  Google Scholar 

  25. Wang, Y., Mah, N., Prigione, A., Wolfrum, K., Andrade-Navarro, M. A., & Adjaye, J. (2010). A transcriptional roadmap to the induction of pluripotency in somatic cells. Stem Cell Reviews, 6, 282–296.

    PubMed  CAS  Google Scholar 

  26. Hu, D., & Wan, Y. (2011). Regulation of Kruppel-like factor 4 (KLF4) by APC pathway is involved in TGF-{beta} signaling. The Journal of biological chemistry, 286, 6890–6901.

    Google Scholar 

  27. Maherali, N., & Hochedlinger, K. (2009). Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Current Biology: CB, 19, 1718–1723.

    PubMed  CAS  Google Scholar 

  28. Wend, P., Holland, J. D., Ziebold, U., & Birchmeier, W. (2010). Wnt signaling in stem and cancer stem cells. Seminars in Cell & Developmental Biology, 21, 855–863.

    CAS  Google Scholar 

  29. Millman, J. R., Tan, J. H., & Colton, C. K. (2009). The effects of low oxygen on self-renewal and differentiation of embryonic stem cells. Current Opinion in Organ Transplantation, 14, 694–700.

    PubMed  Google Scholar 

  30. Page, R. L., Ambady, S., Holmes, W. F., et al. (2009). Induction of stem cell gene expression in adult human fibroblasts without transgenes. Cloning and Stem Cells, 11, 417–426.

    PubMed  CAS  Google Scholar 

  31. Rodin, S., Domogatskaya, A., Strom, S., et al. (2010). Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 28, 611–615.

    PubMed  CAS  Google Scholar 

  32. Newman, A. M., & Cooper, J. B. (2010). Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell, 7, 258–262.

    PubMed  CAS  Google Scholar 

  33. Ramskold, D., Wang, E. T., Burge, C. B., & Sandberg, R. (2009). An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Computational Biology, 5, e1000598.

    PubMed  Google Scholar 

  34. Tavakoli, T., Xu, X., Derby, E., et al. (2009). Self-renewal and differentiation capabilities are variable between human embryonic stem cell lines I3, I6 and BG01V. BMC Cell Biology, 10, 44.

    PubMed  Google Scholar 

  35. Takahashi, K., Narita, M., Yokura, M., Ichisaka, T., & Yamanaka, S. (2009). Human induced pluripotent stem cells on autologous feeders. PloS One, 4, e8067.

    PubMed  Google Scholar 

  36. Swaney, D. L., Wenger, C. D., Thomson, J. A., & Coon, J. J. (2009). Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 106, 995–1000.

    PubMed  CAS  Google Scholar 

  37. Hutchins, A. P., & Robson, P. (2009). Unraveling the human embryonic stem cell phosphoproteome. Cell Stem Cell, 5, 126–128.

    PubMed  CAS  Google Scholar 

  38. Chen, G., Gulbranson, D. R., Hou, Z., et al. (2011). Chemically defined conditions for human iPSC derivation and culture. Nature Methods, 8, 424–429.

    Google Scholar 

  39. Geiger, T., Cox, J., & Mann, M. (2010). Proteomic changes resulting from gene copy number variations in cancer cells. PLoS Genetics, 6, pii: e1001090.

  40. Walther, D. M., & Mann, M. (2011). Accurate quantification of more than 4000 mouse tissue proteins reveals minimal proteome changes during aging. Molecular & Cellular Proteomics: MCP, 10, M110 004523.

    Google Scholar 

  41. Lundberg, E., Fagerberg, L., Klevebring, D., et al. (2010). Defining the transcriptome and proteome in three functionally different human cell lines. Molecular Systems Biology, 6, 450.

    PubMed  Google Scholar 

  42. Huttlin, E. L., Jedrychowski, M. P., Elias, J. E., et al. (2010). A tissue-specific atlas of mouse protein phosphorylation and expression. Cell, 143, 1174–1189.

    PubMed  CAS  Google Scholar 

  43. Esteve, P. O., Chang, Y., Samaranayake, M., et al. (2011). A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nature Structural and Molecular Biology, 18, 42–48.

    PubMed  CAS  Google Scholar 

  44. Guo, B., & Sharrocks, A. D. (2009). Extracellular signal-regulated kinase mitogen-activated protein kinase signaling initiates a dynamic interplay between sumoylation and ubiquitination to regulate the activity of the transcriptional activator PEA3. Molecular and Cellular Biology, 29, 3204–3218.

    PubMed  CAS  Google Scholar 

  45. Simboeck, E., Sawicka, A., Zupkovitz, G., et al. (2010). A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors. The Journal of Biological Chemistry, 285, 41062–41073.

    PubMed  CAS  Google Scholar 

  46. Grimsrud, P. A., Swaney, D. L., Wenger, C. D., Beauchene, N. A., & Coon, J. J. (2010). Phosphoproteomics for the masses. ACS Chemical Biology, 5, 105–119.

    PubMed  CAS  Google Scholar 

  47. Olsen, J. V., Vermeulen, M., Santamaria, A., et al. (2010). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Science Signaling, 3, ra3.

    PubMed  Google Scholar 

  48. Bodenmiller, B., Wanka, S., Kraft, C., et al. (2010). Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Science Signaling, 3, rs4.

    PubMed  CAS  Google Scholar 

  49. Hilger, M., Bonaldi, T., Gnad, F., & Mann, M. (2009). Systems-wide analysis of a phosphatase knock-down by quantitative proteomics and phosphoproteomics. Molecular & cellular proteomics: MCP, 8, 1908–1920.

    CAS  Google Scholar 

  50. Brill, L. M., Salomon, A. R., Ficarro, S. B., Mukherji, M., Stettler-Gill, M., & Peters, E. C. (2004). Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry. Analytical Chemistry, 76, 2763–2772.

    PubMed  CAS  Google Scholar 

  51. Collier, T. S., Sarkar, P., Franck, W. L., Rao, B. M., Dean, R. A., & Muddiman, D. C. (2010) Direct comparison of stable isotope labeling by amino acids in cell culture and spectral counting for quantitative proteomics. Analytical Chemistry, 82, 8696–8702.

    Google Scholar 

  52. Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., et al. (2002). Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnology, 20, 301–305.

    PubMed  CAS  Google Scholar 

  53. Breuker, K., Jin, M., Han, X., Jiang, H., & McLafferty, F. W. (2008). Top-down identification and characterization of biomolecules by mass spectrometry. Journal of the American Society for Mass Spectrometry, 19, 1045–1053.

    PubMed  CAS  Google Scholar 

  54. Collier, T. S., Sarkar, P., Rao, B., & Muddiman, D. C. (2010) Quantitative top-down proteomics of SILAC labeled human embryonic stem cells. Journal of the American Society for Mass Spectrometry, 21, 879–889.

    Google Scholar 

  55. Durbin, K. R., Tran, J. C., Zamdborg, L., et al. (2010) Intact mass detection, interpretation, and visualization to automate Top-Down proteomics on a large scale. Proteomics, 10, 3589–3597.

    Google Scholar 

  56. Bodenmiller, B., Mueller, L. N., Mueller, M., Domon, B., & Aebersold, R. (2007). Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nature Methods, 4, 231–237.

    PubMed  CAS  Google Scholar 

  57. Ficarro, S. B., Adelmant, G., Tomar, M. N., Zhang, Y., Cheng, V. J., & Marto, J. A. (2009). Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Analytical Chemistry, 81, 4566–4575.

    PubMed  CAS  Google Scholar 

  58. Ficarro, S. B., Parikh, J. R., Blank, N. C., & Marto, J. A. (2008). Niobium(V) oxide (Nb2O5): application to phosphoproteomics. Analytical Chemistry, 80, 4606–4613.

    PubMed  CAS  Google Scholar 

  59. Nguyen, V., Cao, L., Lin, J. T., et al. (2009). A new approach for quantitative phosphoproteomic dissection of signaling pathways applied to T cell receptor activation. Molecular & Cellular Proteomics, 8, 2418–2431.

    CAS  Google Scholar 

  60. Hou, J., Cui, Z., Xie, Z., et al. (2010). Phosphoproteome analysis of rat L6 myotubes using reversed-phase C18 prefractionation and titanium dioxide enrichment. Journal of Proteome Research, 9, 777–788.

    PubMed  CAS  Google Scholar 

  61. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., & Jorgensen, T. J. (2005). Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular & Cellular Proteomics: MCP, 4, 873–886.

    CAS  Google Scholar 

  62. Pinkse, M. W., Mohammed, S., Gouw, J. W., van Breukelen, B., Vos, H. R., & Heck, A. J. (2008). Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. Journal of Proteome Research, 7, 687–697.

    PubMed  CAS  Google Scholar 

  63. Iliuk, A. B., Martin, V. A., Alicie, B. M., Geahlen, R. L., & Tao, W. A. (2010). In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Molecular & Cellular Proteomics: MCP, 9, 2162–2172.

    PubMed  CAS  Google Scholar 

  64. Tao, W. A., Wollscheid, B., O’Brien, R., et al. (2005). Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry. Nature Methods, 2, 591–598.

    PubMed  CAS  Google Scholar 

  65. Choudhary, C., & Mann, M. (2010). Decoding signalling networks by mass spectrometry-based proteomics. Nature Reviews. Molecular Cell Biology, 11, 427–439.

    PubMed  CAS  Google Scholar 

  66. Thingholm, T. E., Larsen, M. R., Ingrell, C. R., Kassem, M., & Jensen, O. N. (2008). TiO(2)-based phosphoproteomic analysis of the plasma membrane and the effects of phosphatase inhibitor treatment. Journal of Proteome Research, 7, 3304–3313.

    PubMed  CAS  Google Scholar 

  67. Beausoleil, S. A., Jedrychowski, M., Schwartz, D., et al. (2004). Large-scale characterization of HeLa cell nuclear phosphoproteins. Proceedings of the National Academy of Sciences of the United States of America, 101, 12130–12135.

    PubMed  CAS  Google Scholar 

  68. McNulty, D. E., & Annan, R. S. (2008). Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Molecular & Cellular Proteomics, 7, 971–980.

    CAS  Google Scholar 

  69. Saleem, R. A., Rogers, R. S., Ratushny, A. V., et al. (2010). Integrated phosphoproteomics analysis of a signaling network governing nutrient response and peroxisome induction. Molecular & Cellular Proteomics, 9, 2076–2088.

    Google Scholar 

  70. Posewitz, M. C., & Tempst, P. (1999). Immobilized gallium(III) affinity chromatography of phosphopeptides. Analytical Chemistry, 71, 2883–2892.

    PubMed  CAS  Google Scholar 

  71. Villen, J., & Gygi, S. P. (2008). The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature Protocols, 3, 1630–1638.

    PubMed  Google Scholar 

  72. Brill, L. M., Motamedchaboki, K., Wu, S., & Wolf, D. A. (2009). Comprehensive proteomic analysis of Schizosaccharomyces pombe by two-dimensional HPLC-tandem mass spectrometry. Methods, 48, 311–319.

    Google Scholar 

  73. Olsen, J. V., Blagoev, B., Gnad, F., et al. (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 127, 635–648.

    PubMed  CAS  Google Scholar 

  74. Nagaraj, N., D’Souza, R. C., Cox, J., Olsen, J. V., & Mann, M. (2010). Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. Journal of Proteome Research, 9, 6786–6794.

    PubMed  CAS  Google Scholar 

  75. Xia, Q., Lee, M. V., Rose, C. M., et al. (2011) Characterization and diagnostic value of amino Acid side chain neutral losses following electron-transfer dissociation. Journal of the American Society for Mass Spectrometry, 22, 255–264.

    Google Scholar 

  76. Eng, J., McCormack, A., & Yates, J. R. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry, 5, 976–989.

    CAS  Google Scholar 

  77. Huang, Y., Triscari, J. M., Tseng, G. C., et al. (2005). Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. Analytical Chemistry, 77, 5800–5813.

    PubMed  CAS  Google Scholar 

  78. Syka, J. E., Coon, J. J., Schroeder, M. J., Shabanowitz, J., & Hunt, D. F. (2004). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 101, 9528–9533.

    PubMed  CAS  Google Scholar 

  79. Swaney, D. L., McAlister, G. C., & Coon, J. J. (2008). Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nature Methods, 5, 959–964.

    PubMed  CAS  Google Scholar 

  80. Baker, P. R., Medzihradszky, K. F., & Chalkley, R. J. (2010) Improving software performance for peptide electron transfer dissociation data analysis by implementation of charge state- and sequence-dependent scoring. Molecular & Cellular Proteomics, 9, 1795–1803.

    Google Scholar 

  81. Good, D. M., Wenger, C. D., McAlister, G. C., Bai, D. L., Hunt, D. F., & Coon, J. J. (2009). Post-acquisition ETD spectral processing for increased peptide identifications. Journal of the American Society for Mass Spectrometry, 20, 1435–1440.

    PubMed  CAS  Google Scholar 

  82. Sun, R. X., Dong, M. Q., Song, C. Q., et al. (2010). Improved peptide identification for proteomic analysis based on comprehensive characterization of electron transfer dissociation spectra. Journal of Proteome Research, 9, 6354–6367.

    Google Scholar 

  83. Palumbo, A. M., & Reid, G. E. (2008). Evaluation of gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3. Analytical Chemistry, 80, 9735–9747.

    PubMed  CAS  Google Scholar 

  84. Mischerikow, N., Altelaar, A. F., Navarro, J. D., Mohammed, S., & Heck, A. J. (2010). Comparative assessment of site assignments in CID and electron transfer dissociation spectra of phosphopeptides discloses limited relocation of phosphate groups. Molecular & Cellular Proteomics, 9, 2140–2148.

    CAS  Google Scholar 

  85. Aguiar, M., Haas, W., Beausoleil, S. A., Rush, J., & Gygi, S. P. (2010). Gas-phase rearrangements do not affect site localization reliability in phosphoproteomics data sets. Journal of Proteome Research, 9, 3103–3107.

    PubMed  CAS  Google Scholar 

  86. Kim, S., Mischerikow, N., Bandeira, N., et al. (2010). The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search. Molecular & Cellular Proteomics: MCP, 9, 2840–2852.

    CAS  Google Scholar 

  87. Lee, K. A., Farnsworth, C., Yu, W., & Bonilla, L. E. (2011). 24-hour lock mass protection. Journal of Proteome Research, 10, 880–885.

    Google Scholar 

  88. Olsen, J. V., de Godoy, L. M., Li, G., et al. (2005). Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Molecular & Cellular Proteomics: MCP, 4, 2010–2021.

    CAS  Google Scholar 

  89. Elias, J. E., & Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods, 4, 207–214.

    PubMed  CAS  Google Scholar 

  90. Keller, A., Nesvizhskii, A. I., Kolker, E., & Aebersold, R. (2002). Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Analytical Chemistry, 74, 5383–5392.

    PubMed  CAS  Google Scholar 

  91. Nesvizhskii, A. I., Keller, A., Kolker, E., & Aebersold, R. (2003). A statistical model for identifying proteins by tandem mass spectrometry. Analytical Chemistry, 75, 4646–4658.

    PubMed  CAS  Google Scholar 

  92. White, F. M. (2011). The potential cost of high-throughput proteomics. Science Signal, 4, pe8.

  93. Lu, B., Ruse, C., Xu, T., Park, S. K., & Yates, J., 3rd. (2007). Automatic validation of phosphopeptide identifications from tandem mass spectra. Analytical Chemistry, 79, 1301–1310.

    PubMed  CAS  Google Scholar 

  94. O’Brien, R. N., Shen, Z., Tachikawa, K., Lee, P. A., & Briggs, S. P. (2010). Quantitative proteome analysis of pluripotent cells by iTRAQ mass tagging reveals post-transcriptional regulation of proteins required for ES cell self-renewal. Molecular & Cellular Proteomics, 9, 2238–2251.

    Google Scholar 

  95. Ong, S. E., Blagoev, B., Kratchmarova, I., et al. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics, 1, 376–386.

    CAS  Google Scholar 

  96. Liu, H., Sadygov, R. G., & Yates, J. R., 3rd. (2004). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Analytical Chemistry, 76, 4193–4201.

    PubMed  CAS  Google Scholar 

  97. Park, S. K., Venable, J. D., Xu, T., & Yates, J. R., 3rd. (2008). A quantitative analysis software tool for mass spectrometry-based proteomics. Nature Methods, 5, 319–322.

    PubMed  CAS  Google Scholar 

  98. Zhang, Y., Wen, Z., Washburn, M. P., & Florens, L. (2010). Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Analytical Chemistry, 82, 2272–2281.

    PubMed  CAS  Google Scholar 

  99. Zhou, J. Y., Schepmoes, A. A., Zhang, X., et al. (2010). Improved LC-MS/MS spectral counting statistics by recovering low-scoring spectra matched to confidently identified peptide sequences. Journal of Proteome Research, 9, 5698–5704.

    PubMed  CAS  Google Scholar 

  100. Fermin, D., Basrur, V., Yocum, A. K., Nesvizhskii, A. I. (2011). Abacus: a computational tool for extracting and preprocessing spectral count data for label-free quantitative proteomic analysis. Proteomics, 11, 1340–1345.

  101. Ostrowski, J., & Wyrwicz, L. S. (2009). Integrating genomics, proteomics and bioinformatics in translational studies of molecular medicine. Expert Review of Molecular Diagnostics, 9, 623–630.

    PubMed  CAS  Google Scholar 

  102. Kumar, C., & Mann, M. (2009). Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Letters, 583, 1703–1712.

    PubMed  CAS  Google Scholar 

  103. Nikolsky, Y., Kirillov, E., Zuev, R., Rakhmatulin, E., & Nikolskaya, T. (2009). Functional analysis of OMICs data and small molecule compounds in an integrated “knowledge-based” platform. Methods in Molecular Biology, 563, 177–196.

    PubMed  CAS  Google Scholar 

  104. Payne, S. H., Yau, M., Smolka, M. B., Tanner, S., Zhou, H., & Bafna, V. (2008). Phosphorylation-specific MS/MS scoring for rapid and accurate phosphoproteome analysis. Journal of Proteome Research, 7, 3373–3381.

    PubMed  CAS  Google Scholar 

  105. Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26, 1367–1372.

    PubMed  CAS  Google Scholar 

  106. Choi, H., Fermin, D., & Nesvizhskii, A. I. (2008). Significance analysis of spectral count data in label-free shotgun proteomics. Molecular & Cellular Proteomics, 7, 2373–2385.

    CAS  Google Scholar 

  107. Bodenmiller, B., Malmstrom, J., Gerrits, B., et al. (2007). PhosphoPep–a phosphoproteome resource for systems biology research in Drosophila Kc167 cells. Molecular Systems Biology, 3, 139.

    PubMed  Google Scholar 

  108. Gnad, F., Ren, S., Cox, J., et al. (2007). PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biology, 8, R250.

    PubMed  Google Scholar 

  109. Hornbeck, P. V., Chabra, I., Kornhauser, J. M., Skrzypek, E., & Zhang, B. (2004). PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics, 4, 1551–1561.

    PubMed  CAS  Google Scholar 

  110. Jones, P., Cote, R. G., Martens, L., et al. (2006). PRIDE: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Research, 34, D659–D663.

    PubMed  CAS  Google Scholar 

  111. Linding, R., Jensen, L. J., Ostheimer, G. J., et al. (2007). Systematic discovery of in vivo phosphorylation networks. Cell, 129, 1415–1426.

    PubMed  CAS  Google Scholar 

  112. Kruger, M., Kratchmarova, I., Blagoev, B., Tseng, Y. H., Kahn, C. R., & Mann, M. (2008). Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proceedings of the National Academy of Sciences of the United States of America, 105, 2451–2456.

    PubMed  Google Scholar 

  113. Jovanovic, M., Reiter, L., Picotti, P., et al. (2010). A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans. Nature Methods, 7, 837–842.

    Google Scholar 

  114. Ding, V. M., Boersema, P. J., Foong, L. Y., et al. (2011). Tyrosine phosphorylation profiling in fgf-2 stimulated human embryonic stem cells. PloS One, 6, e17538.

    PubMed  CAS  Google Scholar 

  115. Gual, P., Le Marchand-Brustel, Y., & Tanti, J. F. (2005). Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, 87, 99–109.

    PubMed  CAS  Google Scholar 

  116. Liu, Y. F., Herschkovitz, A., Boura-Halfon, S., et al. (2004). Serine phosphorylation proximal to its phosphotyrosine binding domain inhibits insulin receptor substrate 1 function and promotes insulin resistance. Molecular and Cellular Biology, 24, 9668–9681.

    PubMed  CAS  Google Scholar 

  117. Old, W. M., Shabb, J. B., Houel, S., et al. (2009). Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma. Molecular Cell, 34, 115–131.

    PubMed  CAS  Google Scholar 

  118. Mohyeldin, A., Garzon-Muvdi, T., & Quinones-Hinojosa, A. (2010). Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell, 7, 150–161.

    Google Scholar 

  119. Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., & Yamanaka, S. (2009). Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5, 237–241.

    PubMed  CAS  Google Scholar 

  120. Hudson, C. C., Liu, M., Chiang, G. G., et al. (2002). Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Molecular and Cellular Biology, 22, 7004–7014.

    PubMed  CAS  Google Scholar 

  121. Covello, K. L., Kehler, J., Yu, H., et al. (2006). HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes & Development, 20, 557–570.

    CAS  Google Scholar 

  122. Ezashi, T., Das, P., & Roberts, R. M. (2005). Low O2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 4783–4788.

    PubMed  CAS  Google Scholar 

  123. Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M., & Mann, M. (2005). Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science, 308, 1472–1477.

    PubMed  CAS  Google Scholar 

  124. Mukherji, M., Brill, L. M., Ficarro, S. B., Hampton, G. M., & Schultz, P. G. (2006). A phosphoproteomic analysis of the ErbB2 receptor tyrosine kinase signaling pathways. Biochemistry, 45, 15529–15540.

    PubMed  CAS  Google Scholar 

  125. Schwanhausser, B., Busse, D., Li, N., et al. (2011). Global quantification of mammalian gene expression control. Nature, 473, 337–342.

    PubMed  Google Scholar 

  126. Bernstein, B. E., Mikkelsen, T. S., Xie, X., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.

    PubMed  CAS  Google Scholar 

  127. Beausoleil, S. A., Villen, J., Gerber, S. A., Rush, J., & Gygi, S. P. (2006). A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nature Biotechnology, 24, 1285–1292.

    PubMed  CAS  Google Scholar 

  128. Van Hoof, D., Passier, R., Ward-Van Oostwaard, D., et al. (2006). A quest for human and mouse embryonic stem cell-specific proteins. Molecular & Cellular Proteomics, 5, 1261–1273.

    Google Scholar 

  129. Alvarez-Manilla, G., Warren, N. L., Atwood, J., 3rd, Orlando, R., Dalton, S., & Pierce, M. (2010). Glycoproteomic analysis of embryonic stem cells: identification of potential glycobiomarkers using lectin affinity chromatography of glycopeptides. Journal of Proteome Research, 9, 2062–2075.

    PubMed  CAS  Google Scholar 

  130. Zielinska, D. F., Gnad, F., Wisniewski, J. R., Mann, M. (2010). Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell, 141, 897–907.

  131. Sultan, M., Schulz, M. H., Richard, H., et al. (2008). A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 321, 956–960.

    PubMed  CAS  Google Scholar 

  132. Macek, B., Mann, M., & Olsen, J. V. (2009). Global and site-specific quantitative phosphoproteomics: principles and applications. Annual Review of Pharmacology and Toxicology, 49, 199–221.

    PubMed  CAS  Google Scholar 

  133. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., & Hirakawa, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research, 38, D355–D360.

    PubMed  CAS  Google Scholar 

  134. Jensen, L. J., Kuhn, M., Stark, M., et al. (2009). STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 37, D412–D416.

    PubMed  CAS  Google Scholar 

  135. Miller, M. L., & Blom, N. (2009). Kinase-specific prediction of protein phosphorylation sites. Methods in Molecular Biology, 527, 299–310. x.

    PubMed  CAS  Google Scholar 

  136. Dinkel, H., Chica, C., Via, A., et al. (2011). Phospho.ELM: a database of phosphorylation sites–update 2011. Nucleic Acids Research, 39, D261–D267.

    PubMed  Google Scholar 

  137. Dephoure, N., Zhou, C., Villen, J., et al. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 105, 10762–10767.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to those whose work was not cited due to space constraints.

Support was provided by the SBMRI-NCI Cancer Center Support Grant 5 P30 CA30199-28, the La Jolla Interdisciplinary Neuroscience Center Cores Grant 5 P30 NS057096 from NINDS, RC2 MH090011 from NIMH and by the UCSD Dept. of Psychiatry NIMH T32.

Conflicts of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Evan Y. Snyder or Laurence M. Brill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobe, B.T.D., Hou, J., Crain, A.M. et al. Phosphoproteomic Analysis: An Emerging Role in Deciphering Cellular Signaling in Human Embryonic Stem Cells and Their Differentiated Derivatives. Stem Cell Rev and Rep 8, 16–31 (2012). https://doi.org/10.1007/s12015-011-9317-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9317-8

Keywords

Navigation