Skip to main content
Log in

Epigenetic Control of Embryonic Stem Cell Differentiation

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Pluripotent embryonic stem cells can give rise to almost all somatic cell types but this characteristic requires precise control of their gene expression patterns. The necessity of keeping the entire genome “poised” to enter into any of a number of developmental possibilities requires a unique and highly plastic chromatin organisation based around specific patterns of histone modifications although this state of affairs is normally short lived during embryonic development. By deriving embryonic stem cells from the early embryo, we can preserve the highly specialised genome organisation and this has permitted several detailed investigations into the molecular basis of pluripotency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  2. Stojkovic, M., Lako, M., Stojkovic, P., Stewart, R., Przyborski, S., Armstrong, L., et al. (2004). Derivation of human embryonic stem cells from day-8 blastocysts recovered after three-step in vitro culture. Stem Cells, 22, 790–797.

    Article  PubMed  Google Scholar 

  3. Cortes, J. L., Sanchez, L., Ligero, G., Gutierrez-Aranda, I., Catalina, P., Elosua, C., et al. (2009). Mesenchymal stem cells facilitate the derivation of human embryonic stem cells from cryopreserved poor-quality embryos. Human Reproduction, 24(8), 1844–51.

    Article  PubMed  CAS  Google Scholar 

  4. Strelchenko, N., Verlinsky, O., Kukharenko, V., & Verlinsky, Y. (2004). Morula-derived human embryonic stem cells. Reproductive Biomedicine Online, 9, 623–629.

    Article  PubMed  Google Scholar 

  5. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  6. Chambers, I., & Smith, A. (2004). Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene, 23, 7150–7160.

    Article  PubMed  CAS  Google Scholar 

  7. Ivanova, N. B., Dimos, J. T., Schaniel, C., Hackney, J. A., Moore, K. A., & Lemischka, I. R. (2002). A stem cell molecular signature. Science, 298, 601–604.

    Article  PubMed  CAS  Google Scholar 

  8. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C., & Melton, D. A. (2002). “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science, 298, 597–600.

    Article  PubMed  CAS  Google Scholar 

  9. Sperger, J. M., Chen, X., Draper, J. S., Antosiewicz, J. E., Chon, C. H., Jones, S. B., et al. (2003). Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proceedings of the National Academy of Sciences of the United States of America, 100, 13350–13355.

    Article  PubMed  CAS  Google Scholar 

  10. Margueron, R., Trojer, P., & Reinberg, D. (2005). The key to development: interpreting the histone code? Current Opinion in Genetics & Development, 15, 163–176.

    Article  CAS  Google Scholar 

  11. Armstrong, L., Hughes, O., Yung, S., Hyslop, L., Stewart, R., Wappler, I., et al. (2006). The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Human Molecular Genetics, 15, 1894–1913.

    Article  PubMed  CAS  Google Scholar 

  12. Quina, A. S., Buschbeck, M., & Di Croce, L. (2006). Chromatin structure and epigenetics. Biochemical Pharmacology, 72(11), 1563–9.

    Article  PubMed  CAS  Google Scholar 

  13. Moudrianakis, E. N., & Arents, G. (1993). Structure of the histone octamer core of the nucleosome and its potential interactions with DNA. Cold Spring Harbor Symposia on Quantitative Biology, 58, 273–9.

    Article  PubMed  CAS  Google Scholar 

  14. Chadwick, B. P., & Willard, H. F. (2003). Barring gene expression after XIST: maintaining facultative heterochromatin on the inactive X. Seminars in Cell & Developmental Biology, 14(6), 359–67.

    Article  CAS  Google Scholar 

  15. Kaleem, A., Hoessli, D. C., Ahmad, I., Walker-Nasir, E., Nasim, A., Shakoori, A. R., et al. (2008). Immediate-early gene regulation by interplay between different post-translational modifications on human histone H3. Journal of Cellular Biochemistry, 103(3), 835–51.

    Article  PubMed  CAS  Google Scholar 

  16. Karnani, N., Taylor, C. M., Malhotra, A., & Dutta, A. (2010). Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Molecular Biology of the Cell, 21(3), 393–404.

    Article  PubMed  CAS  Google Scholar 

  17. Wang, Q., Wang, C. M., Ai, J. S., Xiong, B., Yin, S., Hou, Y., et al. (2006). Histone phosphorylation and pericentromeric histone modifications in oocyte meiosis. Cell Cycle, 5(17), 1974–82.

    Article  PubMed  CAS  Google Scholar 

  18. Wang, Y., Fischle, W., Cheung, W., Jacobs, S., Khorasanizadeh, S., & Allis, C. D. (2004). Beyond the double helix: writing and reading the histone code. Novartis Foundation Symposium, 259, 3–17.

    Article  PubMed  CAS  Google Scholar 

  19. Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403(6765), 41–5.

    Article  PubMed  CAS  Google Scholar 

  20. Arya, G., & Schlick, T. (2009). A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments. The Journal of Physical Chemistry. A, 113(16), 4045–59.

    Article  PubMed  CAS  Google Scholar 

  21. Robinson, P. J., An, W., Routh, A., Martino, F., Chapman, L., Roeder, R. G., et al. (2008). 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction. Journal of Molecular Biology, 381(4), 816–25.

    Article  PubMed  CAS  Google Scholar 

  22. Schwarz, P. M., Felthauser, A., Fletcher, T. M., & Hansen, J. C. (1996). Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. Biochemistry, 35(13), 4009–15.

    Article  PubMed  CAS  Google Scholar 

  23. Fenley, A. T., Adams, D. A., & Onufriev, A. V. (2010). Charge state of the globular histone core controls stability of the nucleosome. Biophysical Journal, 99(5), 1577–85.

    Article  PubMed  CAS  Google Scholar 

  24. Mühlbacher, F., Schiessel, H., & Holm, C. (2006). Tail-induced attraction between nucleosome core particles. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 74(3 Pt 1), 031919.

    Article  PubMed  Google Scholar 

  25. Tóth, K., Brun, N., & Langowski, J. (2006). Chromatin compaction at the mononucleosome level. Biochemistry, 45(6), 1591–8.

    Article  PubMed  Google Scholar 

  26. Mujtaba, S., Zeng, L., & Zhou, M. M. (2007). Structure and acetyl-lysine recognition of the bromodomain. Oncogene, 26(37), 5521–7.

    Article  PubMed  CAS  Google Scholar 

  27. Syntichaki, P., Topalidou, I., & Thireos, G. (2000). The Gcn5 bromodomain co-ordinates nucleosome remodelling. Nature, 404(6776), 414–7.

    Article  PubMed  CAS  Google Scholar 

  28. Schneider, R., Bannister, A. J., Myers, F. A., Thorne, A. W., Crane-Robinson, C., & Kouzarides, T. (2004). Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nature Cell Biology, 6(1), 73–7.

    Article  PubMed  CAS  Google Scholar 

  29. Hublitz, P., Albert, M., & Peters, A. H. (2009). Mechanisms of transcriptional repression by histone lysine methylation. International Journal of Developmental Biology, 53(2–3), 335–54.

    Article  PubMed  CAS  Google Scholar 

  30. Nisha, P., Plank, J. L., & Csink, A. K. (2008). Analysis of chromatin structure of genes silenced by heterochromatin in trans. Genetics, 179(1), 359–73.

    Article  PubMed  CAS  Google Scholar 

  31. Morgan, H. D., Santos, F., Green, K., Dean, W., Reik W. (2005). Epigenetic reprogramming in mammals. Hum Mol Genet 14 Spec No 1:R47–58

    Google Scholar 

  32. Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447, 425–432.

    Article  PubMed  CAS  Google Scholar 

  33. Francastel, C., Schubeler, D., Martin, D. I., & Groudine, M. (2000). Nuclear compartmentalization and gene activity. Nature Reviews. Molecular Cell Biology, 1, 137–143.

    Article  PubMed  CAS  Google Scholar 

  34. Arney, K. L., & Fisher, A. G. (2004). Epigenetic aspects of differentiation. Journal of Cell Science, 117, 4355–4363.

    Article  PubMed  CAS  Google Scholar 

  35. Armstrong, L., Lako, M., Dean, W., & Stojkovic, M. (2006). Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells, 24, 805–814.

    Article  PubMed  Google Scholar 

  36. Armstrong, L., Tilgner, K., Saretzki, G., Atkinson, S. P., Stojkovic, M., Moreno, R., et al. (2010). Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells, 28(4), 661–73.

    Article  PubMed  CAS  Google Scholar 

  37. Papp, B., & Plath, K. (2011). Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Research, 21(3), 486–501.

    Article  PubMed  CAS  Google Scholar 

  38. Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1(1), 55–70.

    Article  PubMed  CAS  Google Scholar 

  39. Morgan, H. D., Santos, F., Green, K., Dean, W., & Reik, W. (2005). Epigenetic reprogramming in mammals. Human Molecular Genetics, 14(Spec No 1), R47–58.

    Article  PubMed  CAS  Google Scholar 

  40. Meshorer, E., Yellajoshula, D., George, E., Scambler, P. J., Brown, D. T., & Misteli, T. (2006). Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Developmental Cell, 10, 105–116.

    Article  PubMed  CAS  Google Scholar 

  41. Kimura, H., Tada, M., Nakatsuji, N., & Tada, T. (2004). Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Molecular and Cellular Biology, 24, 5710–5720.

    Article  PubMed  CAS  Google Scholar 

  42. Lee, J. H., Hart, S. R., & Skalnik, D. G. (2004). Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis, 38, 32–3.

    Article  PubMed  CAS  Google Scholar 

  43. Golob, J. L., Paige, S. L., Muskheli, V., Pabon, L., & Murry, C. E. (2008). Chromatin remodeling during mouse and human embryonic stem cell differentiation. Developmental Dynamics, 237(5), 1389–98.

    Article  PubMed  CAS  Google Scholar 

  44. Szutorisz, H., Canzonetta, C., Georgiou, A., Chow, C. M., Tora, L., & Dillon, N. (2005). Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Molecular and Cellular Biology, 25, 1804–1820.

    Article  PubMed  CAS  Google Scholar 

  45. Szutorisz, H., Georgiou, A., Tora, L., & Dillon, N. (2006). The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells. Cell, 127(7), 1375–88.

    Article  PubMed  CAS  Google Scholar 

  46. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.

    Article  PubMed  CAS  Google Scholar 

  47. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956.

    Article  PubMed  CAS  Google Scholar 

  48. Boiani, M., & Scholer, H. R. (2005). Regulatory networks in embryo-derived pluripotent stem cells. Nature Reviews. Molecular Cell Biology, 6, 872–884.

    Article  PubMed  CAS  Google Scholar 

  49. Stewart, R., Stojkovic, M., & Lako, M. (2006). Mechanisms of self-renewal in human embryonic stem cells. European Journal of Cancer, 42, 1257–1272.

    Article  PubMed  CAS  Google Scholar 

  50. Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, D. N., Theunissen, T. W., et al. (2006). A protein interaction network for pluripotency of embryonic stem cells. Nature, 444, 364–368.

    Article  PubMed  CAS  Google Scholar 

  51. Chakrabarti, S. K., Francis, J., Ziesmann, S. M., Garmey, J. C., & Mirmira, R. G. (2003). Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J Biol Chem, 278, 23617–23623.

    Article  PubMed  CAS  Google Scholar 

  52. Chambeyron, S., & Bickmore, W. A. (2004). Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes & Development, 18, 1119–1130.

    Article  CAS  Google Scholar 

  53. Vieira, K. F., Levings, P. P., Hill, M. A., Crusselle, V. J., Kang, S. H., Engel, J. D., et al. (2004). Recruitment of transcription complexes to the beta-globin gene locus in vivo and in vitro. J Biol Chem, 279, 50350–50357.

    Article  PubMed  CAS  Google Scholar 

  54. Gan, Q., Yoshida, T., McDonald, O. G., & Owens, G. K. (2007). Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells, 25, 2–9.

    Article  PubMed  CAS  Google Scholar 

  55. Robertson, K. D. (2001). DNA methylation, methyltransferases, and cancer. Oncogene, 20(24), 3139–55.

    Article  PubMed  CAS  Google Scholar 

  56. Bibikova, M., Chudin, E., Wu, B., Zhou, L., Garcia, E. W., Liu, Y., et al. (2006). Human embryonic stem cells have a unique epigenetic signature. Genome Research, 16(9), 1075–83.

    Article  PubMed  CAS  Google Scholar 

  57. Tomazou, E. M., & Meissner, A. (2010). Epigenetic regulation of pluripotency. Advances in Experimental Medicine and Biology, 695, 26–40.

    Article  PubMed  CAS  Google Scholar 

  58. Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Pääbo, S., Rebhan, M., et al. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 39(4), 457–66.

    Article  PubMed  CAS  Google Scholar 

  59. Ooi, S. K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., et al. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 448(7154), 714–7.

    Article  PubMed  CAS  Google Scholar 

  60. Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271), 315–22.

    Article  PubMed  CAS  Google Scholar 

  61. Chazaud, C., Yamanaka, Y., Pawson, T., & Rossant, J. (2006). Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Developmental Cell, 10, 615–624.

    Article  PubMed  CAS  Google Scholar 

  62. Lee, E. R., McCool, K. W., Murdoch, F. E., & Fritsch, M. K. (2006). Dynamic changes in histone H3 phosphoacetylation during early embryonic stem cell differentiation are directly mediated by mitogen- and stress-activated protein kinase 1 via activation of MAPK pathways. Journal of Biological Chemistry, 281(30), 21162–72.

    Article  PubMed  CAS  Google Scholar 

  63. Johansen, K. M., & Johansen, J. (2006). Regulation of chromatin structure by histone H3S10 phosphorylation. Chromosome Research, 14(4), 393–404.

    Article  PubMed  CAS  Google Scholar 

  64. Cui, K., Zang, C., Roh, T. Y., Schones, D. E., Childs, R. W., Peng, W., et al. (2009). Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell, 4(1), 80–93.

    Article  PubMed  CAS  Google Scholar 

  65. Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153), 553–60.

    Article  PubMed  CAS  Google Scholar 

  66. Hawkins, R. D., Hon, G. C., Lee, L. K., Ngo, Q., Lister, R., Pelizzola, M., et al. (2010). Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell, 6(5), 479–91.

    Article  PubMed  CAS  Google Scholar 

  67. Golebiewska, A., Atkinson, S. P., Lako, M., & Armstrong, L. (2009). Epigenetic landscaping during hESC differentiation to neural cells. Stem Cells, 27(6), 1298–308.

    Article  PubMed  CAS  Google Scholar 

  68. Kurisaki, A., Hamazaki, T. S., Okabayashi, K., Iida, T., Nishine, T., Chonan, R., et al. (2005). Chromatin-related proteins in pluripotent mouse embryonic stem cells are downregulated after removal of leukemia inhibitory factor. Biochemical and Biophysical Research Communications, 335, 667–675.

    Article  PubMed  CAS  Google Scholar 

  69. Kaji, K., Nichols, J., & Hendrich, B. (2007). Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells. Development, 134, 1123–1132.

    Article  PubMed  CAS  Google Scholar 

  70. Klochendler-Yeivin, A., Fiette, L., Barra, J., Muchardt, C., Babinet, C., & Yaniv, M. (2000). The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Reports, 1, 500–506.

    PubMed  CAS  Google Scholar 

  71. Cao, S., Bendall, H., Hicks, G. G., Nashabi, A., Sakano, H., Shinkai, Y., et al. (2003). The high-mobility-group box protein SSRP1/T160 is essential for cell viability in day 3.5 mouse embryos. Molecular and Cellular Biology, 23, 5301–5307.

    Article  PubMed  CAS  Google Scholar 

  72. Houlard, M., Berlivet, S., Probst, A. V., Quivy, J. P., Hery, P., Almouzni, G., et al. (2006). CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genetics, 2, e181.

    Article  PubMed  Google Scholar 

  73. Orkin, S. H. (2000). Diversification of haematopoietic stem cells to specific lineages. Nature Reviews Genetics, 1(1), 57–64.

    Article  PubMed  CAS  Google Scholar 

  74. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E., & Huang, S. (2008). Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature, 453(7194), 544–7.

    Article  PubMed  CAS  Google Scholar 

  75. Lemons, D., & McGinnis, W. (2006). Genomic evolution of Hox gene clusters. Science, 313(5795), 1918–1922.

    Article  PubMed  CAS  Google Scholar 

  76. Akam, M. (1995). Hox genes and the evolution of diverse body plans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 349(1329), 313–319.

    Article  PubMed  CAS  Google Scholar 

  77. Duboule, D. (1994). Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development. Supplement, 1994, 135–142.

    Google Scholar 

  78. Lee, A. P., Koh, E. G., Tay, A., et al. (2006). Highly conserved syntenic blocks at the vertebrate Hox loci and conserved regulatory elements within and outside Hox gene clusters. Proceedings of the National Academy of Sciences of the United States of America, 103(18), 6994–6999.

    Article  PubMed  CAS  Google Scholar 

  79. Atkinson, S. P., Koch, C. M., Clelland, G. K., Willcox, S., Fowler, J. C., Stewart, R., et al. (2008). Epigenetic marking prepares the human HOXA cluster for activation during differentiation of pluripotent cells. Stem Cells, 26(5), 1174–85.

    Article  PubMed  CAS  Google Scholar 

  80. Deschamps, J., & van Nes, J. (2005). Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development, 132(13), 2931–2942.

    Article  PubMed  CAS  Google Scholar 

  81. Mangelsdorf, D. J., Umesono, K., & Evans, R. M. (1994). In M. B. Sporn, A. B. Roberts, & D. S. Goodman (Eds.), The retinoids: Biology, chemistry and medicine (pp. 319–350). New York: Raven.

    Google Scholar 

  82. Langston, A. W., Thompson, J. R., & Gudas, L. J. (1997). Retinoic acid-responsive enhancers located 3′ of the Hox A and Hox B homeobox gene clusters. Functional analysis. Journal of Biological Chemistry, 272(4), 2167–2175.

    Article  PubMed  CAS  Google Scholar 

  83. Moens, C. B., & Selleri, L. (2006). Hox cofactors in vertebrate development. Developmental Bioliology, 291(2), 193–206.

    Article  CAS  Google Scholar 

  84. Featherstone, M. (2003). In T. Lufkin (Ed.), Murine Homeobox gene control of embryonic patterning and organogenesis (pp. 1–42). Amsterdam: Elsevier Science.

    Chapter  Google Scholar 

  85. Nonchev, S., Maconochie, M., Vesque, C., et al. (1996). The conserved role of Krox-20 in directing Hox gene expression during vertebrate hindbrain segmentation. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9339–9345.

    Article  PubMed  CAS  Google Scholar 

  86. Di Rocco, G., Gavalas, A., Popperl, H., et al. (2001). The recruitment of SOX/OCT complexes and the differential activity of HOXA1 and HOXB1 modulate the Hoxb1 auto-regulatory enhancer function. Journal of Biological Chemistry, 276(23), 20506–20515.

    Article  PubMed  Google Scholar 

  87. Duboule, D., & Deschamps, J. (2004). Colinearity loops out. Developmental Cell, 6(6), 738–740.

    Article  PubMed  CAS  Google Scholar 

  88. Duboule, D. (1998). Vertebrate hox gene regulation: clustering and/or colinearity? Current Opinion in Genetics & Development, 8(5), 514–518.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyle Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, L. Epigenetic Control of Embryonic Stem Cell Differentiation. Stem Cell Rev and Rep 8, 67–77 (2012). https://doi.org/10.1007/s12015-011-9300-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9300-4

Keywords

Navigation