Skip to main content
Log in

Unveiling Hair Follicle Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Adult mammalian skin consists of the epidermis, hair follicles (HFs), and sebaceous glands (SGs). Each of these three epithelial lineages contains its own stem cell (SC) population for normal tissue homeostasis, HF cycling, and repair of the epidermis following injury. Here, we provide an overview of the current knowledge on follicle SCs of the adult skin, including their essential features and, most importantly, the control of follicle SC fate. Wnt/β-catenin is required for follicle SC maintenance and niche biology, and β-catenin activation is essential for promoting quiescent follicle SCs to proliferate and terminally differentiate along the hair cell lineage. Further, β-catenin stabilization promotes de novo HF morphogenesis, and constitutively active β-catenin expression results in pilomatricoma. Both bone morphogenetic protein (BMP) and transforming growth factor-β (TGF-β) signals are required for quiescent niche maintenance: BMP deletion results in SC activation, whereas TGF-β may play a role in SC identity maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuchs, E. (2007). Scratching the surface of skin development. Nature, 445(7130), 834–842.

    Article  CAS  PubMed  Google Scholar 

  2. Cotsarelis, G., Sun, T. T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61(7), 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  3. Lyle, S., Christofidou-Solomidou, M., Liu, Y., Elder, D. E., Albelda, S., & Cotsarelis, G. (1998). The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. Journal of Cell Science, 111(Pt 21), 3179–3188.

    CAS  PubMed  Google Scholar 

  4. Ito, M., Liu, Y., Yang, Z., et al. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Natural Medicines, 11(12), 1351–1354.

    Article  CAS  Google Scholar 

  5. Levy, V., Lindon, C., Harfe, B. D., & Morgan, B. A. (2005). Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Developmental Cell, 9(6), 855–861.

    Article  CAS  PubMed  Google Scholar 

  6. Morris, R. J., & Potten, C. S. (1999). Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. Journal of Investigative Dermatology, 112(4), 470–475.

    Article  CAS  PubMed  Google Scholar 

  7. Taylor, G., Lehrer, M. S., Jensen, P. J., Sun, T. T., & Lavker, R. M. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell, 102(4), 451–461.

    Article  CAS  PubMed  Google Scholar 

  8. Rochat, A., Kobayashi, K., & Barrandon, Y. (1994). Location of stem cells of human hair follicles by clonal analysis. Cell, 76(6), 1063–1073.

    Article  CAS  PubMed  Google Scholar 

  9. Ghazizadeh, S., & Taichman, L. B. (2001). Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. The EMBO Journal, 20(6), 1215–1222.

    Article  CAS  PubMed  Google Scholar 

  10. Braun, K. M., Niemann, C., Jensen, U. B., Sundberg, J. P., Silva-Vargas, V., & Watt, F. M. (2003). Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development, 130(21), 5241–5255.

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi, K., Rochat, A., & Barrandon, Y. (1993). Segregation of keratinocyte colony-forming cells in the bulge of the rat vibrissa. Proceedings of the National Academy of Sciences of the United States of America, 90(15), 7391–7395.

    Article  CAS  PubMed  Google Scholar 

  12. Morris, R. J., Liu, Y., Marles, L., et al. (2004). Capturing and profiling adult hair follicle stem cells. Nature Biotechnology, 22(4), 411–417.

    Article  CAS  PubMed  Google Scholar 

  13. Trempus, C. S., Morris, R. J., Bortner, C. D., et al. (2003). Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. Journal of Investigative Dermatology, 120(4), 501–511.

    Article  CAS  PubMed  Google Scholar 

  14. Cotsarelis, G. (2006). Epithelial stem cells: a folliculocentric view. Journal of Investigative Dermatology, 126(7), 1459–1468.

    Article  CAS  PubMed  Google Scholar 

  15. Ohyama, M., Terunuma, A., Tock, C. L., et al. (2006). Characterization and isolation of stem cell-enriched human hair follicle bulge cells. Journal of Clinical Investigation, 116(1), 249–260.

    Article  CAS  PubMed  Google Scholar 

  16. Cotsarelis, G. (2006). Gene expression profiling gets to the root of human hair follicle stem cells. Journal of Clinical Investigation, 116(1), 19–22.

    Article  CAS  PubMed  Google Scholar 

  17. Vidal, V. P., Chaboissier, M. C., Lutzkendorf, S., et al. (2005). Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Current Biology, 15(15), 1340–1351.

    Article  CAS  PubMed  Google Scholar 

  18. DasGupta, R., & Fuchs, E. (1999). Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development, 126(20), 4557–4568.

    CAS  PubMed  Google Scholar 

  19. Rhee, H., Polak, L., & Fuchs, E. (2006). Lhx2 maintains stem cell character in hair follicles. Science, 312(5782), 1946–1949.

    Article  CAS  PubMed  Google Scholar 

  20. Jaks, V., Barker, N., Kasper, M., et al. (2008). Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genetics, 40(11), 1291–1299.

    Article  CAS  PubMed  Google Scholar 

  21. Trempus, C. S., Morris, R. J., Ehinger, M., et al. (2007). CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Research, 67(9), 4173–4181.

    Article  CAS  PubMed  Google Scholar 

  22. Tumbar, T., Guasch, G., Greco, V., et al. (2004). Defining the epithelial stem cell niche in skin. Science, 303(5656), 359–363.

    Article  CAS  PubMed  Google Scholar 

  23. Roh, C., Tao, Q., Photopoulos, C., & Lyle, S. (2005). In vitro differences between keratinocyte stem cells and transit-amplifying cells of the human hair follicle. Journal of Investigative Dermatology, 125(6), 1099–1105.

    Article  CAS  PubMed  Google Scholar 

  24. Blanpain, C., & Fuchs, E. (2006). Epidermal stem cells of the skin. Annual Review of Cell and Developmental Biology, 22, 339–373.

    Article  CAS  PubMed  Google Scholar 

  25. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K., & Barrandon, Y. (2001). Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell, 104(2), 233–245.

    Article  CAS  PubMed  Google Scholar 

  26. Claudinot, S., Nicolas, M., Oshima, H., Rochat, A., & Barrandon, Y. (2005). Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14677–14682.

    Article  CAS  PubMed  Google Scholar 

  27. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L., & Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 118(5), 635–648.

    Article  CAS  PubMed  Google Scholar 

  28. Amoh, Y., Li, L., Katsuoka, K., & Hoffman, R. M. (2009). Multipotent nestin-expressing hair follicle stem cells. The Journal of Dermatology, 36(1), 1–9.

    Article  PubMed  Google Scholar 

  29. Snippert, H.J., Haegebarth, A., Kasper, M., et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science, 327(5971), 1385-1389.

  30. Nijhof, J. G., Braun, K. M., Giangreco, A., et al. (2006). The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development, 133(15), 3027–3037.

    Article  CAS  PubMed  Google Scholar 

  31. Jensen, K. B., Collins, C. A., Nascimento, E., et al. (2009). Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell, 4(5), 427–439.

    Article  CAS  PubMed  Google Scholar 

  32. Sarin, K. Y., Cheung, P., Gilison, D., et al. (2005). Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature, 436(7053), 1048–1052.

    Article  CAS  PubMed  Google Scholar 

  33. Flores, I., Cayuela, M. L., & Blasco, M. A. (2005). Effects of telomerase and telomere length on epidermal stem cell behavior. Science, 309(5738), 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  34. Benitah, S. A., Frye, M., Glogauer, M., & Watt, F. M. (2005). Stem cell depletion through epidermal deletion of Rac1. Science, 309(5736), 933–935.

    Article  PubMed  Google Scholar 

  35. Wu, X., Quondamatteo, F., Lefever, T., et al. (2006). Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin. Genes & Development, 20(5), 571–585.

    Article  CAS  Google Scholar 

  36. Tiede, S., & Paus, R. (2006). Lhx2–decisive role in epithelial stem cell maintenance, or just the “tip of the iceberg”? Bioessays, 28(12), 1157–1160.

    Article  CAS  PubMed  Google Scholar 

  37. Nowak, J. A., Polak, L., Pasolli, H. A., & Fuchs, E. (2008). Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell, 3(1), 33–43.

    Article  CAS  PubMed  Google Scholar 

  38. Cianferotti, L., Cox, M., Skorija, K., & Demay, M. B. (2007). Vitamin D receptor is essential for normal keratinocyte stem cell function. Proceedings of the National Academy of Sciences of the United States of America, 104(22), 9428–9433.

    Article  CAS  PubMed  Google Scholar 

  39. van Genderen, C., Okamura, R. M., Farinas, I., et al. (1994). Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes & Development, 8(22), 2691–2703.

    Article  Google Scholar 

  40. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., & Birchmeier, W. (2001). beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 105(4), 533–545.

    Article  CAS  PubMed  Google Scholar 

  41. Andl, T., Reddy, S. T., Gaddapara, T., & Millar, S. E. (2002). WNT signals are required for the initiation of hair follicle development. Developmental Cell, 2(5), 643–653.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, Y., Andl, T., Yang, S. H., et al. (2008). Activation of beta-catenin signaling programs embryonic epidermis to hair follicle fate. Development, 135(12), 2161–2172.

    Article  CAS  PubMed  Google Scholar 

  43. Gat, U., DasGupta, R., Degenstein, L., & Fuchs, E. (1998). De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell, 95(5), 605–614.

    Article  CAS  PubMed  Google Scholar 

  44. Van Mater, D., Kolligs, F. T., Dlugosz, A. A., & Fearon, E. R. (2003). Transient activation of beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes & Development, 17(10), 1219–1224.

    Article  Google Scholar 

  45. Lo Celso, C., Prowse, D. M., & Watt, F. M. (2004). Transient activation of beta-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development, 131(8), 1787–1799.

    Article  CAS  PubMed  Google Scholar 

  46. Lowry, W. E., Blanpain, C., Nowak, J. A., Guasch, G., Lewis, L., & Fuchs, E. (2005). Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes & Development, 19(13), 1596–1611.

    Article  CAS  Google Scholar 

  47. Ito, M., Yang, Z., Andl, T., et al. (2007). Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature, 447(7142), 316–320.

    Article  CAS  PubMed  Google Scholar 

  48. Merrill, B. J., Gat, U., DasGupta, R., & Fuchs, E. (2001). Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes & Development, 15(13), 1688–1705.

    Article  CAS  Google Scholar 

  49. Malanchi, I., Peinado, H., Kassen, D., et al. (2008). Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature, 452(7187), 650–653.

    Article  CAS  PubMed  Google Scholar 

  50. Xia, J., Urabe, K., Moroi, Y., et al. (2006). beta-Catenin mutation and its nuclear localization are confirmed to be frequent causes of Wnt signaling pathway activation in pilomatricomas. Journal of Dermatological Science, 41(1), 67–75.

    Article  CAS  PubMed  Google Scholar 

  51. Chan, E. F., Gat, U., McNiff, J. M., & Fuchs, E. (1999). A common human skin tumour is caused by activating mutations in beta-catenin. Nature Genetics, 21(4), 410–413.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, J., He, X. C., Tong, W. G., et al. (2006). Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. Stem Cells, 24(12), 2826–2839.

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen, H., Merrill, B. J., Polak, L., et al. (2009). Tcf3 and Tcf4 are essential for long-term homeostasis of skin epithelia. Nature Genetics, 41(10), 1068–1075.

    Article  CAS  PubMed  Google Scholar 

  54. Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398(6726), 422–426.

    Article  CAS  PubMed  Google Scholar 

  55. Silva-Vargas, V., Lo Celso, C., Giangreco, A., et al. (2005). Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Developmental Cell, 9(1), 121–131.

    Article  CAS  PubMed  Google Scholar 

  56. Beaudoin, G. M., 3rd, Sisk, J. M., Coulombe, P. A., & Thompson, C. C. (2005). Hairless triggers reactivation of hair growth by promoting Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14653–14658.

    Article  CAS  PubMed  Google Scholar 

  57. Wei, G., Ku, S., Ma, G. K., et al. (2007). HIPK2 represses beta-catenin-mediated transcription, epidermal stem cell expansion, and skin tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13040–13045.

    Article  CAS  PubMed  Google Scholar 

  58. Botchkarev, V. A., Botchkareva, N. V., Roth, W., et al. (1999). Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nature Cell Biology, 1(3), 158–164.

    Article  CAS  PubMed  Google Scholar 

  59. Kobielak, K., Pasolli, H. A., Alonso, L., Polak, L., & Fuchs, E. (2003). Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. The Journal of Cell Biology, 163(3), 609–623.

    Article  CAS  PubMed  Google Scholar 

  60. Kulessa, H., Turk, G., & Hogan, B. L. (2000). Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. The EMBO Journal, 19(24), 6664–6674.

    Article  CAS  PubMed  Google Scholar 

  61. Andl, T., Ahn, K., Kairo, A., et al. (2004). Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development, 131(10), 2257–2268.

    Article  CAS  PubMed  Google Scholar 

  62. Botchkarev, V. A. (2003). Bone morphogenetic proteins and their antagonists in skin and hair follicle biology. Journal of Investigative Dermatology, 120(1), 36–47.

    Article  CAS  PubMed  Google Scholar 

  63. Botchkarev, V. A., Botchkareva, N. V., Nakamura, M., et al. (2001). Noggin is required for induction of the hair follicle growth phase in postnatal skin. The FASEB Journal, 15(12), 2205–2214.

    Article  CAS  PubMed  Google Scholar 

  64. Sharov, A. A., Sharova, T. Y., Mardaryev, A. N., et al. (2006). Bone morphogenetic protein signaling regulates the size of hair follicles and modulates the expression of cell cycle-associated genes. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18166–18171.

    Article  CAS  PubMed  Google Scholar 

  65. Ming Kwan, K., Li, A. G., Wang, X. J., Wurst, W., & Behringer, R. R. (2004). Essential roles of BMPR-IA signaling in differentiation and growth of hair follicles and in skin tumorigenesis. Genesis, 39(1), 10–25.

    Article  PubMed  Google Scholar 

  66. Yang, L., Wang, L., & Yang, X. (2009). Disruption of Smad4 in mouse epidermis leads to depletion of follicle stem cells. Molecular Biology of the Cell, 20(3), 882–890.

    Article  CAS  PubMed  Google Scholar 

  67. Mou, C., Jackson, B., Schneider, P., Overbeek, P. A., & Headon, D. J. (2006). Generation of the primary hair follicle pattern. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9075–9080.

    Article  CAS  PubMed  Google Scholar 

  68. Plikus, M. V., Mayer, J. A., de la Cruz, D., et al. (2008). Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature, 451(7176), 340–344.

    Article  CAS  PubMed  Google Scholar 

  69. Greco, V., Chen, T., Rendl, M., et al. (2009). A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell, 4(2), 155–169.

    Article  CAS  PubMed  Google Scholar 

  70. Kobielak, K., Stokes, N., de la Cruz, J., Polak, L., & Fuchs, E. (2007). Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10063–10068.

    Article  CAS  PubMed  Google Scholar 

  71. Moore, K. A., & Lemischka, I. R. (2006). Stem cells and their niches. Science, 311(5769), 1880–1885.

    Article  CAS  PubMed  Google Scholar 

  72. Jamora, C., DasGupta, R., Kocieniewski, P., & Fuchs, E. (2003). Links between signal transduction, transcription and adhesion in epithelial bud development. Nature, 422(6929), 317–322.

    Article  CAS  PubMed  Google Scholar 

  73. Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H., & Fuchs, E. (2008). NFATc1 balances quiescence and proliferation of skin stem cells. Cell, 132(2), 299–310.

    Article  CAS  PubMed  Google Scholar 

  74. Shi, Y., & Massague, J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 113(6), 685–700.

    Article  CAS  PubMed  Google Scholar 

  75. Qiao, W., Li, A. G., Owens, P., Xu, X., Wang, X. J., & Deng, C. X. (2006). Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin. Oncogene, 25(2), 207–217.

    CAS  PubMed  Google Scholar 

  76. Yang, L., Mao, C., Teng, Y., et al. (2005). Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Research, 65(19), 8671–8678.

    Article  CAS  PubMed  Google Scholar 

  77. Foitzik, K., Lindner, G., Mueller-Roever, S., et al. (2000). Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo. The FASEB Journal, 14(5), 752–760.

    CAS  PubMed  Google Scholar 

  78. Frederick, J. P., Liberati, N. T., Waddell, D. S., Shi, Y., & Wang, X. F. (2004). Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Molecular and Cellular Biology, 24(6), 2546–2559.

    Article  CAS  PubMed  Google Scholar 

  79. Arnold, I., & Watt, F. M. (2001). c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Current Biology, 11(8), 558–568.

    Article  CAS  PubMed  Google Scholar 

  80. Waikel, R. L., Kawachi, Y., Waikel, P. A., Wang, X. J., & Roop, D. R. (2001). Deregulated expression of c-Myc depletes epidermal stem cells. Nature Genetics, 28(2), 165–168.

    Article  CAS  PubMed  Google Scholar 

  81. Zanet, J., Pibre, S., Jacquet, C., Ramirez, A., de Alboran, I. M., & Gandarillas, A. (2005). Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. Journal of Cell Science, 118(Pt 8), 1693–1704.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Xiao Yang for her critical analysis of this manuscript and skillful technical assistance. This work was supported by a grant from the National Natural Science Foundation of China (30800443).

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyun Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Peng, R. Unveiling Hair Follicle Stem Cells. Stem Cell Rev and Rep 6, 658–664 (2010). https://doi.org/10.1007/s12015-010-9172-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9172-z

Keywords

Navigation