Skip to main content

Advertisement

Log in

Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Alongside their contribution to research, human embryonic stem cells (hESC) may also prove valuable for cell-based therapies. Traditionally, these cells have been grown in adhesion culture either with or without feeder cells, allowing for their continuous growth as undifferentiated cells. However, to be applicable in therapy and industry they must be produced in a scalable and controlled process. Here we present for the first time a suspension culture system for undifferentiated hESC and induced pluripotent stem cells (iPSC), based on medium supplemented with the IL6RIL6 chimera (interleukin-6 receptor fused to interleukin-6), and basic fibroblast growth factor. Four hESC lines cultured in this system maintained all ESC features after 20 passages, including stable karyotype and pluripotency. Similar results were obtained when hESC were replaced with iPSC from two different cell lines. We demonstrate that the IL6RIL6 chimera supports the self-renewal and expansion of undifferentiated hESC and iPSC in suspension, and thus present another efficient system for large-scale propagation of undifferentiated pluripotent cells for clinical and translational applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Thomson, J. A., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  2. Amit, M., et al. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental Biology, 227, 271–278.

    Article  CAS  PubMed  Google Scholar 

  3. Ludwig, T. E., et al. (2006). Derivation of human embryonic stem cells in defined conditions. Nature Biotechnology, 24, 185–187.

    Article  CAS  PubMed  Google Scholar 

  4. Xu, C., Inokuma, M. S., Denham, J., et al. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 19, 971–974.

    Article  CAS  PubMed  Google Scholar 

  5. Amit, M., et al. (2004). Feeder and serum-free culture system for human embryonic stem cells. Biology of Reproduction, 70, 837–845.

    Article  CAS  PubMed  Google Scholar 

  6. Xu, C., et al. (2005). Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells, 23, 315–323.

    Article  CAS  PubMed  Google Scholar 

  7. Xu, R. H., et al. (2005). Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nature Methods, 2, 185–190.

    Article  CAS  PubMed  Google Scholar 

  8. Richards, M., et al. (2002). Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nature Biotechnology, 20, 933–936.

    Article  CAS  PubMed  Google Scholar 

  9. Amit, M., et al. (2003). Human feeder layers for human embryonic stem cells. Biology of Reproduction, 68, 2150–2156.

    Article  CAS  PubMed  Google Scholar 

  10. Hovatta, O., et al. (2003). Culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Human Reproduction, 18, 1404–1409.

    Article  PubMed  Google Scholar 

  11. Cheng, L., et al. (2003). Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells, 21, 131–142.

    Article  CAS  PubMed  Google Scholar 

  12. Smith, A. G., et al. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 336, 688–690.

    Article  CAS  PubMed  Google Scholar 

  13. Williams, R. L., et al. (1988). Myeloid leukemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 336, 684–687.

    Article  CAS  PubMed  Google Scholar 

  14. Rose, T. M., et al. (1994). Oncostatin M (OSM) inhibits the differentiation of pluripotent embryonic stem cells in vitro. Cytokine, 6, 48–54.

    Article  CAS  PubMed  Google Scholar 

  15. Conover, J. C., et al. (1993). Ciliary neurotrophic factor maintains the pluripotentiality of embryonic stem cells. Development, 119, 559–565.

    CAS  PubMed  Google Scholar 

  16. Niwa, H., et al. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes and Development, 12, 2048–2060.

    Article  CAS  PubMed  Google Scholar 

  17. Reubinoff, B. E., et al. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 18, 399–404.

    Article  CAS  PubMed  Google Scholar 

  18. Daheron, L., et al. (2004). LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells, 22, 770–778.

    Article  CAS  PubMed  Google Scholar 

  19. Sato, N., et al. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10, 55–63.

    Article  CAS  PubMed  Google Scholar 

  20. Humphrey, R. K., et al. (2004). Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells, 22, 522–530.

    Article  CAS  PubMed  Google Scholar 

  21. Taga, T., & Kishimoto, T. (1997). Gp130 and the interleukin-6 family of cytokines. Annual Review of Immunology, 15, 797–819.

    Article  CAS  PubMed  Google Scholar 

  22. Novick, D., et al. (1992). Enhancement of interleukin-6 cytostatic effect on human breast carcinoma cells by soluble IL-6 receptor from urine and reversion by monoclonal antibody. Cytokine, 4, 6–11.

    Article  CAS  PubMed  Google Scholar 

  23. Chebath, J., et al. (1997). Interleukin-6 receptor-interleukin-6 fusion proteins with enhanced interleukin-6 type pleiotropic activities. European Cytokine Network, 8, 359–365.

    CAS  PubMed  Google Scholar 

  24. Kollet, O., et al. (1999). The soluble Interleukin-6 (IL6) Receptor/IL6 fusion protein enhances in vitro maintenance and proliferation of human CD34+CD38−/low cells capable of repopulating Severe Combined Immunodeficiency mice. Blood, 94, 923–931.

    CAS  PubMed  Google Scholar 

  25. Itskovitz-Eldor, J., et al. (2000). Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Molecular Medicine, 6, 88–95.

    CAS  PubMed  Google Scholar 

  26. Thomson, J. A., et al. (1995). Isolation of a primate embryonic stem cell line. Proceedings of the National Academy of Sciences of the United States of America, 92, 7844–7848.

    Article  CAS  PubMed  Google Scholar 

  27. Thomson, J. A., et al. (1995). Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biology of Reproduction, 55, 254–259.

    Article  Google Scholar 

  28. Yoshida, K., et al. (1994). Maintenance of the pluripotential phenotype of embryonic stem cells through direct activation of gp130 signalling pathways. Mechanisms of Development, 45, 163–171.

    Article  CAS  PubMed  Google Scholar 

  29. Shen, M. M., & Leder, P. (1992). Leukemia inhibitory factor is expressed by the preimplantation uterus and selectively blocks primitive ectoderm formation in vitro. Proc Natl Acad Sci U S A, 89(17), 8240–8244.

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez, R. T., et al. (2007). Manipulation of OCT4 levels in human embryonic stem cells results in induction of differential cell types. Experimental Biology and Medicine, 232, 1368–1380.

    Article  CAS  PubMed  Google Scholar 

  31. Beattie, G. M., et al. (2005). Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells, 23, 489–495.

    Article  CAS  PubMed  Google Scholar 

  32. Wang, L., et al. (2005). Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood, 105, 4598–4603.

    Article  CAS  PubMed  Google Scholar 

  33. Cormier, J. T., et al. (2006). Expansion of undifferentiated murine embryonic stem cells as aggregates in suspension culture bioreactors. Tissue Engineering, 12, 3233–3245.

    Article  CAS  PubMed  Google Scholar 

  34. Zur Nieden, N. I., et al. (2007). Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors. Journal of Biotechnology, 129, 421–432.

    Article  CAS  PubMed  Google Scholar 

  35. Phillips, B. W., et al. (2008). Attachment and growth of human embryonic stem cells on microcarriers. Journal of Biotechnology, 138, 24–32.

    Article  CAS  PubMed  Google Scholar 

  36. Oh, S. K., et al. (2009). Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cells Research. Mar 4. [Epub ahead of print].

  37. Krawetz, R., et al. (2009). Large-Scale Expansion of Pluripotent Human Embryonic Stem Cells in Stirred Suspension Bioreactors. Tissue Eng Part C Methods. Sep 8. [Epub ahead of print].

  38. Amit, M., & Itskovitz-Eldor, J. (2002). Derivation and spontaneous differentiation of human embryonic stem cells. Journal of Anatomy, 200, 225–232.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Hadas O’Neill for editing the manuscript. This research was supported by Technion Research and Development Foundation (TRDF). J.I.-E. holds the Sylvia and Stanley Shirvan Chair in Cell and Tissue Regeneration Research at the Technion—Israel Institute of Technology.

Conflict of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Itskovitz-Eldor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4.96MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amit, M., Chebath, J., Margulets, V. et al. Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells. Stem Cell Rev and Rep 6, 248–259 (2010). https://doi.org/10.1007/s12015-010-9149-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9149-y

Keywords

Navigation