Skip to main content

Advertisement

Log in

The High Mobility Group Protein HMGA2: A Co-Regulator of Chromatin Structure and Pluripotency in Stem Cells?

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The small, chromatin-associated HMGA proteins contain three separate DNA binding domains, so-called AT hooks, which bind preferentially to short AT-rich sequences. These proteins are abundant in pluripotent embryonic stem (ES) cells and most malignant human tumors, but are not detectable in normal somatic cells. They act both as activator and repressor of gene expression, and most likely facilitate DNA architectural changes during formation of specialized nucleoprotein structures at selected promoter regions. For example, HMGA2 is involved in transcriptional activation of certain cell proliferation genes, which likely contributes to its well-established oncogenic potential during tumor formation. However, surprisingly little is known about how HMGA proteins bind DNA packaged in chromatin and how this affects the chromatin structure at a larger scale. Experimental evidence suggests that HMGA2 competes with binding of histone H1 in the chromatin fiber. This could substantially alter chromatin domain structures in ES cells and contribute to the activation of certain transcription networks. HMGA2 also seems capable of recruiting enzymes directly involved in histone modifications to trigger gene expression. Furthermore, it was shown that multiple HMGA2 molecules bind stably to a single nucleosome core particle whose structure is known. How these features of HMGA2 impinge on chromatin organization inside a living cell is unknown. In this commentary, we propose that HMGA2, through the action of three independent DNA binding domains, substantially contributes to the plasticity of ES cell chromatin and is involved in the maintenance of a un-differentiated cell state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bianchi, M. E., & Agresti, A. (2005). HMG proteins: dynamic players in gene regulation and differentiation. Current Opinion in Genetics & Development., 15, 496–506.

    Article  CAS  Google Scholar 

  2. Reeves, R., & Beckerbauer, L. (2001). HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochimica et Biophysica Acta-Gene Structure and Expression, 1519, 13–29.

    Article  CAS  Google Scholar 

  3. Chau, K. Y., Patel, U. A., Lee, K. L., Lam, H. Y., & Crane-Robinson, C. (1995). The gene for the human architectural transcription factor HMGI-C consists of five exons each coding for a distinct functional element. Nucleic Acids Research, 23, 4262–4266.

    Article  PubMed  CAS  Google Scholar 

  4. Chieffi, P., Battista, S., Barchi, M., et al. (2002). HMGA1 and HMGA2 protein expression in mouse spermatogenesis. Oncogene, 21, 3644–3650.

    Article  PubMed  CAS  Google Scholar 

  5. Li, O., Vasudevan, D., Davey, C. A., & Droge, P. (2006). High-level expression of DNA architectural factor HMGA2 and its association with nucleosomes in human embryonic stem cells. Genesis, 44, 523–529.

    Article  PubMed  CAS  Google Scholar 

  6. Li, O., Li, J., & Droge, P. (2007). DNA architectural factor and proto-oncogene HMGA2 regulates key developmental genes in pluripotent human embryonic stem cells. FEBS Letters, 581, 3533–3537.

    Article  PubMed  CAS  Google Scholar 

  7. Weedon, M. N., Lango, H., Lindgren, C. M., et al. (2008). Genome-wide association analysis identifies 20 loci that influence adult height. Nature Genetics, 40, 575–583.

    Article  PubMed  CAS  Google Scholar 

  8. Ligon, A. H., Moore, S. D., Parisi, M. A., et al. (2005). Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. American Journal of Human Genetics, 76, 340–348.

    Article  PubMed  CAS  Google Scholar 

  9. Zhou, X., Benson, K. F., Ashar, H. R., & Chada, K. (1995). Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature, 376, 771–774.

    Article  PubMed  CAS  Google Scholar 

  10. Fedele, M., Fidanza, V., Battista, S., et al. (2006). Haploinsufficiency of the Hmga1 gene causes cardiac hypertrophy and myelo-lymphoproliferative disorders in mice. Cancer Research, 66, 2536–2543.

    Article  PubMed  CAS  Google Scholar 

  11. Foti, D., Chiefari, E., Fedele, M., et al. (2005). Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nature Medicine, 11, 765–773.

    Article  PubMed  CAS  Google Scholar 

  12. Fusco, A., & Fedele, M. (2007). Roles of HMGA proteins in cancer. Nature Reviews Cancer, 7, 899–910.

    Article  PubMed  CAS  Google Scholar 

  13. Persson, F., Andren, Y., Winnes, M., et al. (2009). High-resolution genomic profiling of adenomas and carcinomas of the salivary glands reveals amplification, rearrangement, and fusion of HMGA2. Genes Chromosomes Cancer, 48, 69–82.

    Article  PubMed  CAS  Google Scholar 

  14. Droge, P., & Davey, C. A. (2008). Do cells let-7 determine stemness? Cell Stem Cell, 2, 8–9.

    Article  PubMed  CAS  Google Scholar 

  15. Hammond, S. M., & Sharpless, N. E. (2008). HMGA2, microRNAs, and stem cell aging. Cell, 135, 1013–1016.

    Article  PubMed  CAS  Google Scholar 

  16. Fukada, S. I., Uezumi, A., Ikemoto, M., et al. (2007). Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells, 25, 2448–2459.

    Article  PubMed  CAS  Google Scholar 

  17. Reeves, R., Nissen, M. S., & The, A. (1990). T-Dna-binding domain of mammalian high mobility group-I chromosomal-proteins—a novel peptide motif for recognizing Dna-structure. Journal of Biological Chemistry, 265, 8573–8582.

    PubMed  CAS  Google Scholar 

  18. Manfioletti, G., Rustighi, A., Mantovani, F., Goodwin, G. H., & Giancotti, V. (1995). Isolation and characterization of the gene coding for murine high-mobility-group protein HMGI-C. Gene, 167, 249–253.

    Article  PubMed  CAS  Google Scholar 

  19. Patel, U. A., Bandiera, A., Manfioletti, G., Giancotti, V., Chau, K. Y., & Crane-Robinson, C. (1994). Expression and cDNA cloning of human HMGI-C phosphoprotein. Biochemical and Biophysical Research Communications, 201, 63–70.

    Article  PubMed  CAS  Google Scholar 

  20. Miao, Y., Cui, T., Leng, F., & Wilson, W. D. (2008). Inhibition of high-mobility-group A2 protein binding to DNA by netropsin: a biosensor-surface plasmon resonance assay. Analytical Biochemistry, 374, 7–15.

    Article  PubMed  CAS  Google Scholar 

  21. Huth, J. R., Bewley, C. A., Nissen, M. S., et al. (1997). The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nature Structural Biology, 4, 657–665.

    Article  PubMed  CAS  Google Scholar 

  22. Cui, T. J., Wei, S., Brew, K., & Leng, F. F. (2005). Energetics of binding the mammalian high mobility group protein HMGA2 to poly(dA-dT)(2) and poly(dA)-poly(dT). Journal of Molecular Biology, 352, 629–645.

    Article  PubMed  CAS  Google Scholar 

  23. Levy, W. B., & Dixon, G. H. (1978). A study of the localization of high mobility group proteins in chromatin. Canadian Journal of Biochemistry, 56, 480–491.

    Article  PubMed  CAS  Google Scholar 

  24. Tessari, M. A., Gostissa, M., Altamura, S., et al. (2003). Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2. Molecular and Cellular Biology, 23, 9104–9116.

    Article  PubMed  CAS  Google Scholar 

  25. Fedele, M., Pierantoni, G. M., Visone, R., & Fusco, A. (2006). E2F1 activation is responsible for pituitary adenomas induced by HMGA2 gene overexpression. Cell Division, 1, 17.

    Article  PubMed  CAS  Google Scholar 

  26. Fedele, M., Visone, R., De Martino, I., et al. (2006). HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell, 9, 459–471.

    Article  PubMed  CAS  Google Scholar 

  27. Di Cello, F., Hillion, J., Hristov, A., et al. (2008). HMGA2 participates in transformation in human lung cancer. Molecular Cancer Research, 6, 743–750.

    Article  PubMed  Google Scholar 

  28. Borrmann, L., Schwanbeck, R., Heyduk, T., et al. (2003). High mobility group A2 protein and its derivatives bind a specific region of the promoter of DNA repair gene ERCC1 and modulate its activity. Nucleic Acids Research, 31, 6841–6851.

    Article  PubMed  CAS  Google Scholar 

  29. Boo, L. N., Lin, H. H., Chung, V., et al. (2005). High mobility group A2 potentiates genotoxic stress in part through he modulation of basal and DNA damage-dependent phosphatidylinositol 3-kinase-related protein kinase activation. Cancer Research, 65, 6622–6630.

    Article  PubMed  CAS  Google Scholar 

  30. Reeves, R., & Wolffe, A. P. (1996). Substrate structure influences binding of the non-histone protein HMG-I(Y) to free and nucleosomal DNA. Biochemistry, 35, 5063–5074.

    Article  PubMed  CAS  Google Scholar 

  31. Reeves, R., & Nissen, M. S. (1993). Interaction of High-Mobility Group-I(Y) Nonhistone Proteins with Nucleosome Core Particles. Journal of Biological Chemistry, 268, 21137–21146.

    PubMed  CAS  Google Scholar 

  32. Goodwin, G. H., Mathew, C. G. P., Wright, C. A., Venkov, C. D., & Johns, E. W. (1979). Analysis of the High Mobility Group Proteins Associated with Salt-Soluble Nucleosomes. Nucleic Acids Research, 7, 1815–1835.

    Article  PubMed  CAS  Google Scholar 

  33. Funayama, R., Saito, M., Tanobe, H., & Ishikawa, F. (2006). Loss of linker histone H1 in cellular senescence. Journal of Cell Biology, 175, 869–880.

    Article  PubMed  CAS  Google Scholar 

  34. Narita, M., Narita, M., Krizhanovsky, V., et al. (2006). A novel role for high-mobility group A proteins in cellular senescence and heterochromatin formation. Cell, 126, 503–514.

    Article  PubMed  CAS  Google Scholar 

  35. Catez, F., Yang, H., Tracey, K. J., Reeves, R., Misteli, T., & Bustin, M. (2004). Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin. Molecular and Cellular Biology, 24, 4321–4328.

    Article  PubMed  CAS  Google Scholar 

  36. Lever, M. A., Th'Ng, J. P. H., Sun, X. J., & Hendzel, M. J. (2000). Rapid exchange of histone H1.1 on chromatin in living human cells. Nature, 408, 873–876.

    Article  PubMed  CAS  Google Scholar 

  37. Misteli, T., Gunjan, A., Hock, R., Bustin, M., & Brown, D. T. (2000). Dynamic binding of histone H1 to chromatin in living cells. Nature, 408, 877–881.

    Article  PubMed  CAS  Google Scholar 

  38. Meshorer, E., Yellajoshula, D., George, E., Scambler, P. J., Brown, D. T., & Misteli, T. (2006). Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell, 10, 105–116.

    Article  PubMed  CAS  Google Scholar 

  39. Phair, R. D., & Misteli, T. (2000). High mobility of proteins in the mammalian cell nucleus. Nature, 404, 604–609.

    Article  PubMed  CAS  Google Scholar 

  40. Scaffidi, P., Misteli, T., & Bianchi, M. E. (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 418, 191–195.

    Article  PubMed  CAS  Google Scholar 

  41. Sgarra, R., Furlan, C., Zammitti, S., et al. (2008). Interaction proteomics of the HMGA chromatin architectural factors. Proteomics, 8, 4721–4732.

    Article  PubMed  CAS  Google Scholar 

  42. Sgarra, R., Tessari, M. A., Di Bernardo, J., et al. (2005). Discovering high mobility group A molecular partners in tumour cells. Proteomics, 5, 1494–1506.

    Article  PubMed  CAS  Google Scholar 

  43. Gilbert, N., & Ramsahoye, B. (2005). The relationship between chromatin structure and transcriptional activity in mammalian genomes. Briefings in Functional Genomics and Proteomics, 4, 129–142.

    Article  PubMed  CAS  Google Scholar 

  44. Hock, R., Witte, F., Brocher, J., Schutz, M., & Scheer, U. (2006). Expression of HMGA2 variants during oogenesis and early embryogenesis of Xenopus laevis. European Journal of Cell Biology, 85, 519–528.

    Article  PubMed  CAS  Google Scholar 

  45. Tan, S. M., Wang, S. T., Hentze, H., & Droge, P. (2007). A UTF1-based selection system for stable homogeneously pluripotent human embryonic stem cell cultures. Nucleic Acids Research, 35, e118.

    Article  PubMed  CAS  Google Scholar 

  46. van den Boom, V., Kooistra, S. M., Boesjes, M., et al. (2007). UTF1 is a chromatin-associated protein involved in ES cell differentiation. Journal of Cell Biology, 178, 913–924.

    Article  PubMed  CAS  Google Scholar 

  47. Nishimoto, M., Fukushima, A., Okuda, A., & Muramatsu, M. (1999). The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Molecular and Cellular Biology, 19, 5453–5465.

    PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant of the Stem Cell Network North Rhine Westphalia, Germany (grant No: 314–40000808) and the Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kurt Pfannkuche or Peter Dröge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfannkuche, K., Summer, H., Li, O. et al. The High Mobility Group Protein HMGA2: A Co-Regulator of Chromatin Structure and Pluripotency in Stem Cells?. Stem Cell Rev and Rep 5, 224–230 (2009). https://doi.org/10.1007/s12015-009-9078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9078-9

Keywords

Navigation