Skip to main content
Log in

Curcumin Promotes Cell Cycle Arrest and Inhibits Survival of Human Renal Cancer Cells by Negative Modulation of the PI3K/AKT Signaling Pathway

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Curcumin possesses anti-cancer effects. In the current study, we tested the effect of curcumin on cell proliferation, viability, apoptosis, cell cycle phases, and activation of the PI3K/Akt pathway in the renal cell carcinoma (RCC) cell line RCC-949. We observed that cell proliferation and viability were markedly inhibited by curcumin, while cell apoptosis was promoted. The latter effect was associated with increased expression of Bcl-2 and diminished expression of Bax (both: mRNA and protein). The cells treated with curcumin increasingly went into cell cycle arrest, which was likely mediated by diminished expression of cyclin B1, as seen in curcumin-treated cells. In addition, curcumin decreased activation of the PI3K/AKT signaling pathway. In conclusion, our results demonstrate that curcumin exerts anti-cancer effects by negative modulation of the PI3K/AKT signaling pathway and may represent a promising new drug to treat RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kraushaar, G., & Wiebe, S. (2005). Renal cell carcinoma as a second malignant neoplasm in a patient with non-syndromic hemihypertrophy and previous Wilms tumor. Pediatric Radiology, 35, 1208–1211.

    Article  PubMed  Google Scholar 

  2. Kuhara, H., Wakabayashi, T., Kishimoto, H., Sadoh, S., Suzuki, T., & Senda, Y. (1984). Malignant mediastinal myxoid tumor and renal cell carcinoma. Acta Patholoy Japan, 34, 881–887.

    CAS  Google Scholar 

  3. Ustaalioglu Oven, B. B., Bilici, A., Seker, M., Salepci, T., Keser, S., & Gumus, M. (2009). Renal cell carcinoma with pulmonary metastasis misdiagnosed as other primary malignant tumor. Journal of BUON, 14, 727–728.

    CAS  PubMed  Google Scholar 

  4. Haddad, A. Q., Wood, C. G., Abel, E. J., Krabbe, L. M., Darwish, O. M., Thompson, R. H., et al. (2014). Oncologic outcomes following surgical resection of renal cell carcinoma with inferior vena caval thrombus extending above the hepatic veins: A contemporary multicenter cohort. Journal of Urology, 192, 1050–1056.

    Article  PubMed  Google Scholar 

  5. Kim, H. L., Seligson, D., Liu, X., Janzen, N., Bui, M. H., Yu, H., et al. (2005). Using tumor markers to predict the survival of patients with metastatic renal cell carcinoma. Journal of Urology, 173, 1496–1501.

    Article  CAS  PubMed  Google Scholar 

  6. Dornbusch, J., Zacharis, A., Meinhardt, M., Erdmann, K., Wolff, I., Froehner, M., et al. (2013). Analyses of potential predictive markers and survival data for a response to sunitinib in patients with metastatic renal cell carcinoma. PLoS ONE, 8, e76386.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Figlin, R. A. (2013). From the guest editor: Renal cell carcinoma: The next decade of development. Cancer Journal, 2013(19), 297–298.

    Article  Google Scholar 

  8. White, M. C., Peipins, L. A., Watson, M., Trivers, K. F., Holman, D. M., & Rodriguez, J. L. (2013). Cancer prevention for the next generation. Journal of Adolescent Health, 52, S1–S7.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Yue, C. H., Zheng, L. T., Guo, Q. M., & Li, K. P. (2014). Study on extracting and separating curcuminoids from Curcuma longa rhizome using ultrasound strengthen by micro emulsion. Zhong Yao Cai, 37, 880–883. (in Chinese).

    CAS  PubMed  Google Scholar 

  10. Lyn, L. Y., Sze, H. W., & Rajendran, A. (2011). Crystal modifications and dissolution rate of piroxicam. Acta Pharmaceutica, 61, 391–402.

    Article  CAS  PubMed  Google Scholar 

  11. Troselj, K. G., & Kujundzic, R. N. (2014). Curcumin in combined cancer therapy. Current Pharmaceutical Design, 2014(20), 6682–6696.

    Article  Google Scholar 

  12. Sharma, R. A., Gescher, A. J., & Steward, W. P. (2005). Curcumin: The story so far. European Journal of Cancer, 41, 1955–1968.

    Article  CAS  PubMed  Google Scholar 

  13. Siddiqui, A., Cui, X., Wu, R., & Dong, W. (2006). The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-gamma. Critical Care Medicine, 34, 1874–1882.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, P., & Wang, B. (2014). Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells. RSC Advances, 4, 35242–35250.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Panzhinskiy, E., & Hua, Y. (2014). Novel curcumin derivative CNB-001 mitigates obesity-associated insulin resistance. Journal of Pharmacology and Experimental Therapeutics, 349, 248–257.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Uehara, Y., Inoue, M., & Fukuda, K. (2014). Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer, 219, 950–957.

    Google Scholar 

  17. Killian, P. H., Kronski, E., & Michalik, K. M. (2012). Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis, 33, 2507–2519.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Q. Y., Zheng, Y., & Jiao, D. M. (2014). Curcumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway. Journal of Nutritional Biochemistry, 25, 177–185.

    Article  PubMed  Google Scholar 

  19. Yin, Z., & Sun, J. (2014). Curcumin induces human SKOV3 cell apoptosis via the activation of Rho-kinase. European Journal of Gynaecological Oncology, 35, 433–437.

    CAS  PubMed  Google Scholar 

  20. Buss, S., & Dobra, J. (2013). Visible light is a better co-inducer of apoptosis for curcumin-treated human melanoma cells than UVA. PLoS ONE, 8, e79748.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Son, Y. O., & Pratheeshkumar, P. (2013). Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3β/β-catenin signaling. Toxicology and Applied Pharmacology, 2013(271), 239–248.

    Article  Google Scholar 

  22. Liu, Z. L., & Mao, J. H. (2013). Inhibition of fatty acid synthase suppresses osteosarcoma cell invasion and migration via downregulation of the PI3K/Akt signaling pathway in vitro. Molecular Medicine Reports, 2013(7), 608–612.

    Google Scholar 

  23. Tsukamoto, T., & Hama, S. (2013). Selenate induces epithelial-mesenchymal transition in a colorectal carcinoma cell line by AKT activation. Experimental Cell Research, 319, 1913–1921.

    Article  CAS  PubMed  Google Scholar 

  24. Paplomata, E., & O’Regan, R. (2014). The PI3K/AKT/mTOR pathway in breast cancer: Targets, trials and biomarkers. Therapeutic Advances in Medical Oncology, 6, 154–166.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, W., Li, B. et al. Curcumin Promotes Cell Cycle Arrest and Inhibits Survival of Human Renal Cancer Cells by Negative Modulation of the PI3K/AKT Signaling Pathway. Cell Biochem Biophys 73, 681–686 (2015). https://doi.org/10.1007/s12013-015-0694-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0694-5

Keywords

Navigation