Skip to main content

Advertisement

Log in

Synthetic miR-145 Mimic Enhances the Cytotoxic Effect of the Antiangiogenic Drug Sunitinib in Glioblastoma

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Although aggressive therapeutic regimen has been applied in the treatment of Glioblastoma (GBM), the prognosis of patients with GBM remains poor. Preclinical studies have demonstrated the efficacy of Suntinib in GBM both in vitro and in vivo. In this study, we showed that the cytotoxicity was enhanced by transfection with miR-145 mimic. In addition, we suggested that the enhanced cytotoxicity of Sunitinib by miR-145 mimic was mediated by inhibition of both P-gp and Bcrp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Furnari, F. B., et al. (2007). Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes & Development, 21(21), 2683–2710.

    Article  CAS  Google Scholar 

  2. Noda, S. E., et al. (2009). Molecular advances of brain tumors in radiation oncology. Semininars in Radiation Oncology, 19(3), 171–178.

    Article  Google Scholar 

  3. Desjardins, A., et al. (2005). Chemotherapy and novel therapeutic approaches in malignant glioma. Front Biosci, 10, 2645–2668.

    Article  CAS  PubMed  Google Scholar 

  4. Tuettenberg, J., Friedel, C., & Vajkoczy, P. (2006). Angiogenesis in malignant glioma—a target for antitumor therapy? Critical Reviews in Oncology Hematology, 59(3), 181–193.

    Article  CAS  Google Scholar 

  5. Cohen, M. H., et al. (2009). FDA drug approval summary: Bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist, 14(11), 1131–1138.

    Article  CAS  PubMed  Google Scholar 

  6. di Tomaso, E., et al. (2011). Glioblastoma recurrence after cediranib therapy in patients: Lack of “rebound” revascularization as mode of escape. Cancer Research, 71(1), 19–28.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Wick, W., et al. (2011). Pathway inhibition: emerging molecular targets for treating glioblastoma. Neuro Oncology, 13(6), 566–579.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  9. Alvarez-Garcia, I., & Miska, E. A. (2005). MicroRNA functions in animal development and human disease. Development, 132(21), 4653–4662.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, B., et al. (2007). microRNAs as oncogenes and tumor suppressors. Development Biology, 302(1), 1–12.

    Article  CAS  Google Scholar 

  11. Lawler, S., & Chiocca, E. A. (2009). Emerging functions of microRNAs in glioblastoma. Journal of Neuro-oncology, 92(3), 297–306.

    Article  CAS  PubMed  Google Scholar 

  12. Li, Y., et al. (2009). MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Research, 69(19), 7569–7576.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Godlewski, J., et al. (2008). Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Research, 68(22), 9125–9130.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, T. M., et al. (2011). A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs. Cancer Research, 71(9), 3387–3399.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lee, H. K., et al. (2013). MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor. PLoS ONE, 8(2), e54652.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Rani, S. B., et al. (2013). MiR-145 functions as a tumor-suppressive RNA by targeting Sox9 and adducin 3 in human glioma cells. Neuro Oncology, 15(10), 1302–1316.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. La Rocca, G., et al. (2009). Growth inhibition by microRNAs that target the insulin receptor substrate-1. Cell Cycle, 8(14), 2255–2259.

    Article  PubMed  Google Scholar 

  18. Sachdeva, M., & Mo, Y. Y. (2010). miR-145-mediated suppression of cell growth, invasion and metastasis. American Journal of Translational Research, 2(2), 170–180.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Speranza, M. C., et al. (2012). NEDD9, a novel target of miR-145, increases the invasiveness of glioblastoma. Oncotarget, 3(7), 723–734.

    PubMed Central  PubMed  Google Scholar 

  20. Lu, Y., et al. (2013). MiR-145 reduces ADAM17 expression and inhibits in vitro migration and invasion of glioma cells. Oncology Reports, 29(1), 67–72.

    PubMed Central  PubMed  Google Scholar 

  21. Wan, X., et al. (2014). ROCK1, a novel target of miR-145, promotes glioma cell invasion. Molecular Medicine Reports, 9(5), 1877–1882.

    CAS  PubMed  Google Scholar 

  22. Lee, H. K., et al. (2013). Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget, 4(2), 346–361.

    PubMed Central  PubMed  Google Scholar 

  23. Shi, L., et al. (2014). miR-145 inhibits migration and invasion of glioma stem cells by targeting ABCG2. Neuromolecular Medicine, 16(2), 517–528.

    Article  CAS  PubMed  Google Scholar 

  24. Xu, N., et al. (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137(4), 647–658.

    Article  CAS  PubMed  Google Scholar 

  25. Carthew, R. W. (2006). Gene regulation by microRNAs. Current Opinion in Genetics & Development, 16(2), 203–208.

    Article  CAS  Google Scholar 

  26. Lovat, F., Valeri, N., & Croce, C. M. (2011). MicroRNAs in the pathogenesis of cancer. Seminars in Oncology, 38(6), 724–733.

    Article  CAS  PubMed  Google Scholar 

  27. Quintavalle, C., et al. (2012). miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPmu. Oncogene, 31(7), 858–868.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Fang, L., et al. (2011). MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene, 30(7), 806–821.

    Article  CAS  PubMed  Google Scholar 

  29. Sasayama, T., et al. (2009). MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. International Journal of Cancer, 125(6), 1407–1413.

    Article  CAS  Google Scholar 

  30. Kefas, B., et al. (2010). Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol, 12(11), 1102–1112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Guha, A., et al. (1995). Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. International Journal of Cancer, 60(2), 168–173.

    Article  CAS  Google Scholar 

  32. Wang, D., et al. (1999). Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Research, 59(7), 1464–1472.

    CAS  PubMed  Google Scholar 

  33. Lokker, N. A., et al. (2002). Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: Evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Research, 62(13), 3729–3735.

    CAS  PubMed  Google Scholar 

  34. Westermark, B., Heldin, C. H., & Nister, M. (1995). Platelet-derived growth factor in human glioma. Glia, 15(3), 257–263.

    Article  CAS  PubMed  Google Scholar 

  35. de Bouard, S., et al. (2007). Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro Oncol, 9(4), 412–423.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Chahal, M., et al. (2010). MGMT modulates glioblastoma angiogenesis and response to the tyrosine kinase inhibitor sunitinib. Neuro Oncology, 12(8), 822–833.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Strawn, L. M., et al. (2000). Effects of SU101 in combination with cytotoxic agents on the growth of subcutaneous tumor xenografts. Clinical Cancer Research, 6(7), 2931–2940.

    CAS  PubMed  Google Scholar 

  38. Zhou, Q., Guo, P., & Gallo, J. M. (2008). Impact of angiogenesis inhibition by sunitinib on tumor distribution of temozolomide. Clinical Cancer Research, 14(5), 1540–1549.

    Article  PubMed  Google Scholar 

  39. Gore, M. E., et al. (2011). Sunitinib in metastatic renal cell carcinoma patients with brain metastases. Cancer, 117(3), 501–509.

    Article  CAS  PubMed  Google Scholar 

  40. Oberoi, R. K., Mittapalli, R. K., & Elmquist, W. F. (2013). Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. Journal of Pharmacology and Experimental Therapeutics, 347(3), 755–764.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingchen Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, Z., Jiang, B. et al. Synthetic miR-145 Mimic Enhances the Cytotoxic Effect of the Antiangiogenic Drug Sunitinib in Glioblastoma. Cell Biochem Biophys 72, 551–557 (2015). https://doi.org/10.1007/s12013-014-0501-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0501-8

Keywords

Navigation