Skip to main content
Log in

Effects of Lettuce Glycoside B in Ameliorating Pulmonary Fibrosis Induced by Irradiation Exposure and its Anti-Oxidative Stress Mechanism

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The present research assessed the effects of lettuce glycoside B (LGB), a compound separated and purified from Pterocypsela laciniata, on irradiation-induced pulmonary fibrosis and explored the mechanism involved. Animal model of irradiation exposure inducing pulmonary fibrosis was established by Co irradiator. Rats were intraperitoneally treated with LGB (100, 200 and 400 mg/kg) once per day for a month. Lung index data were analyzed. The levels of fibrosis were assessed by hydroxyproline (Hyp) of pulmonary and lung tissue sections after irradiation exposure. Alveolitis and fibrosis levels were calculated from semi-quantitative analysis of hematoxylin and eosin and Masson’s trichrome lung section staining. The serum levels of transforming growth factor β1 (TGF-β1), interleukin (IL)-6, and tumor necrosis factor-α (TNF-α) were also evaluated. Antioxidant enzymes of superoxide dismutase (SOD) were measured in serum. Moreover, we also measured serum malondialdehyde (MDA) levels, a marker of oxidative stress. Treatment with LGB significantly reduced mortality rates and lung index scores and MDA content, enhanced SOD and other antioxidant enzymes activity, and regulated serum levels of TGF-β1, IL-6, and TNF-α. These results demonstrated that LGB significantly inhibited irradiation-induced pulmonary fibrosis. Furthermore, the results suggested promising clinical effect of LGB therapies for treating irradiation-induced pulmonary fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. You, H., Wei, L., Sun, W. L., et al. (2014). The green tea extract epigallocatechin-3-gallate inhibits irradiation-induced pulmonary fibrosis in adult rats. International Journal of Molecular Medicine, 34, 92–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Rhieu, B. H., Epperly, M. W., Cao, S., et al. (2014). Improved longevity of hematopoiesis in long-term bone marrow cultures and reduced irradiation-induced pulmonary fibrosis in Toll-like receptor-4 deletion recombinant-negative mice. In Vivo, 28, 441–448.

    PubMed  Google Scholar 

  3. Wu, Z., Wang, X., Yang, R., et al. (2013). Effects of carbon ion beam irradiation on lung injury and pulmonary fibrosis in mice. Experimental and Therapeutic Medicine, 5, 771–776.

    PubMed Central  PubMed  Google Scholar 

  4. Kalash, R., Berhane, H., Goff, J., et al. (2013). Effects of thoracic irradiation on pulmonary endothelial compared to alveolar type-II cells in fibrosis-prone C57BL/6NTac mice. In Vivo, 27, 291–297.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Gao, F., Fish, B. L., Moulder, J. E., et al. (2013). Enalapril mitigates radiation-induced pneumonitis and pulmonary fibrosis if started 35 days after whole-thorax irradiation. Radiation Research, 180, 546–552.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rhieu, B. H., Epperly, M. W., Cao, S., et al. (2014). Increased hematopoiesis in long-term bone marrow cultures and reduced irradiation-induced pulmonary fibrosis in von willebrand factor homologous deletion recombinant mice. In Vivo, 28, 449–456.

    PubMed  Google Scholar 

  7. Zhan, H., Li, S., Sun, J., et al. (2014). Lettuce glycoside B ameliorates cerebral ischemia reperfusion injury by increasing nerve growth factor and neurotrophin-3 expression of cerebral cortex in rats. Indian Journal of Pharmacology, 46, 63–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ali, E. N., & Mansour, S. Z. (2011). Boswellic acids extract attenuates pulmonary fibrosis induced by bleomycin and oxidative stress from gamma irradiation in rats. Chinese Medicine, 6, 36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wang, L., Feng, Y., Fu, X. L., et al. (2006). Effects of gene therapy with replication-defective adenovirus ericlosing Egr-1 promoter and Smad7 cDNA on irradiation-induced pulmonary fibrosis: experiment with mice. Zhonghua Yi Xue Za Zhi, 86, 2847–2852.

    CAS  PubMed  Google Scholar 

  10. Epperly, M. W., Franicola, D., Zhang, X., et al. (2006). Reduced irradiation pulmonary fibrosis and stromal cell migration in Smad3-/- marrow chimeric mice. In Vivo, 20, 573–582.

    CAS  PubMed  Google Scholar 

  11. Epperly, M. W., Guo, H., Shields, D., et al. (2004). Correlation of ionizing irradiation-induced late pulmonary fibrosis with long-term bone marrow culture fibroblast progenitor cell biology in mice homozygous deletion recombinant negative for endothelial cell adhesion molecules. In Vivo, 18, 1–14.

    CAS  PubMed  Google Scholar 

  12. Epperly, M. W., Guo, H., Gretton, J. E., et al. (2003). Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 29, 213–224.

    Article  CAS  PubMed  Google Scholar 

  13. Cheresh, P., Kim, S. J., Tulasiram, S., et al. (2013). Oxidative stress and pulmonary fibrosis. Biochimica et Biophysica Acta, 1832, 1028–1040.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Brass, D. M., Spencer, J. C., Li, Z., et al. (2012). Innate immune activation by inhaled lipopolysaccharide, independent of oxidative stress, exacerbates silica-induced pulmonary fibrosis in mice. PloS One, 7, e40789.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Inghilleri, S., Morbini, P., Campo, I., et al. (2011). Erratum to “factors influencing oxidative imbalance in pulmonary fibrosis: an immunohistochemical study”. Pulmonary Medicine, 2011, 515608.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Inghilleri, S., Morbini, P., Campo, I., et al. (2011). Factors influencing oxidative imbalance in pulmonary fibrosis: an immunohistochemical study. Pulmonary Medicine, 2011, 421409.

    PubMed Central  PubMed  Google Scholar 

  17. Cui, Y., Robertson, J., Maharaj, S., et al. (2011). Oxidative stress contributes to the induction and persistence of TGF-beta1 induced pulmonary fibrosis. International Journal of Biochemistry & Cell Biology, 43, 1122–1133.

    Article  CAS  Google Scholar 

  18. Mazur, W., Lindholm, P., Vuorinen, K., et al. (2010). Cell-specific elevation of NRF2 and sulfiredoxin-1 as markers of oxidative stress in the lungs of idiopathic pulmonary fibrosis and non-specific interstitial pneumonia. APMIS, 118, 703–712.

    Article  CAS  PubMed  Google Scholar 

  19. Kliment, C. R., & Oury, T. D. (2010). Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radical Biology and Medicine, 49, 707–717.

    Article  CAS  PubMed  Google Scholar 

  20. Kliment, C. R., Englert, J. M., Gochuico, B. R., et al. (2009). Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. Journal of Biological Chemistry, 284, 3537–3545.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Vuorinen, K., Ohlmeier, S., Lepparanta, O., et al. (2008). Peroxiredoxin II expression and its association with oxidative stress and cell proliferation in human idiopathic pulmonary fibrosis. Journal of Histochemistry and Cytochemistry, 56, 951–959.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Helal, G. K., & Helal, O. K. (2009). Metallothionein attenuates carmustine-induced oxidative stress and protects against pulmonary fibrosis in rats. Archives of Toxicology, 83, 87–94.

    Article  CAS  PubMed  Google Scholar 

  23. Walters, D. M., Cho, H. Y., & Kleeberger, S. R. (2008). Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxidants & Redox Signaling, 10, 321–332.

    Article  CAS  Google Scholar 

  24. Xie, H., Wang, R., Tang, X., et al. (2012). Paraquat-induced pulmonary fibrosis starts at an early stage of inflammation in rats. Immunotherapy, 4, 1809–1815.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, Y., Cui, A., Wang, F., et al. (2012). Characteristics of pulmonary inflammation in combined pulmonary fibrosis and emphysema. Chinese Medical Journal, 125, 3015–3021.

    CAS  PubMed  Google Scholar 

  26. Bui, S., Boisserie-Lacroix, V., Ceccato, F., et al. (2012). Pulmonary inflammation in cystic fibrosis. Archives de Pediatrie, 19(Suppl 1), S8–12.

    Article  PubMed  Google Scholar 

  27. Becker, K. A., Henry, B., Ziobro, R., et al. (2012). Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. Journal Of Molecular Medicine, 90, 1011–1023.

    Article  CAS  PubMed  Google Scholar 

  28. Yang, H. Z., Wang, J. P., Mi, S., et al. (2012). TLR4 activity is required in the resolution of pulmonary inflammation and fibrosis after acute and chronic lung injury. American Journal of Pathology, 180, 275–292.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqi Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Gao, Y., Chen, Y. et al. Effects of Lettuce Glycoside B in Ameliorating Pulmonary Fibrosis Induced by Irradiation Exposure and its Anti-Oxidative Stress Mechanism. Cell Biochem Biophys 71, 971–976 (2015). https://doi.org/10.1007/s12013-014-0295-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0295-8

Keywords

Navigation