Skip to main content
Log in

Angiotensin II Activates Signal Transducers and Activators of Transcription 3 via Rac1 in the Atrial Tissue in Permanent Atrial Fibrillation Patients with Rheumatic Heart Disease

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Patients with rheumatic heart disease (RHD) often experience persistent atrial fibrillation (AF) associated with adverse atrial structural remodeling (ASR) manifested by atrial fibrosis and left atrial enlargement. The aim of this study was to explore the potential molecular signaling mechanisms for atrial fibrosis and ASR. Twenty RHD patients with persistent AF and 10 RHD patients with sinus rhythm (Group A) were recruited in our study, which all underwent transthoracic echocardiography. Right atrial appendage (RAA) tissue samples were obtained from these patients during mitral/aortic valve replacement operation. The AF patients were further divided into two groups according to left atrial diameter (LAD): Group B with LAD ranging 50–65 mm and Group C with LAD >65 mm. Histological examinations were performed with hematoxylin–eosin staining and Masson’s trichrome staining. Atrial angiotensin II (AngII) content was measured by ELISA. Rac1 and STAT3 protein levels were determined by Western blot analysis. Hematoxylin–eosin staining demonstrated highly organized arrangement of atrial muscles in control Group A and significant derangement in both Group B and C AF patients with reduced cell density and increased cell size. Moreover, Masson’s trichrome staining showed that atrial myocytes were surrounded by large trunks of collagen fibers in both Group B and C, but not in Group A. There was a positive correlation between atrial tissue fibrosis and LAD. AngII content was markedly higher in Group C than in Group B than in Group A, which was positively correlated with LAD. Similarly, Rac1 and STAT3 protein levels were found considerably higher in Group C and B than in Group A with excellent correlation to LAD. Our study unraveled for the first time the AngII/Rac1/STAT3 signaling as a mechanism for ASR thereby AF in a particular clinical setting―RHD patients with persistent AF and indicated inhibition of this pathway may help ameliorating adverse ASR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benjamin, E. J., Wolf, P. A., D’Agostino, R. B., Silbershatz, H., Kannel, W. B., & Levy, D. (1998). Impact of atrial fibrillation on the risk of death: The Framingham Heart Study. Circulation, 98, 946–952.

    Article  CAS  PubMed  Google Scholar 

  2. Nattel, S. (2002). New ideas about atrial fibrillation 50 years on. Nature, 415, 219–226.

    Article  CAS  PubMed  Google Scholar 

  3. Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., et al. (1998). Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. New England Journal of Medicine, 339, 659–666.

    Article  PubMed  Google Scholar 

  4. Hwang, C., Wu, T. J., Doshi, R. N., Peter, C. T., & Chen, P. S. (2000). Vein of Marshall cannulation for the analysis of electrical activity in patients with focal atrial fibrillation. Circulation, 101, 1503–1505.

    Article  CAS  PubMed  Google Scholar 

  5. Allessie, M., Ausma, J., & Schotten, U. (2002). Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovascular Research, 54, 230–246.

    Article  CAS  PubMed  Google Scholar 

  6. Diker, E., Aydogdu, S., Ozdemir, M., Kural, T., Polat, K., Cehreli, S., et al. (1996). Prevalence and predictors of atrial fibrillation in rheumatic valvular heart disease. American Journal of Cardiology, 77, 96–98.

    Article  CAS  PubMed  Google Scholar 

  7. Cardin, S., Libby, E., Pelletier, P., Le Bouter, S., Shiroshita-Takeshita, A., Le Meur, N., et al. (2007). Contrasting gene expression profiles in two canine models of atrial fibrillation. Circulation Research, 100, 425–433.

    Article  CAS  PubMed  Google Scholar 

  8. Everett, T. H., Li, H., Mangrum, J. M., McRury, I. D., Mitchell, M. A., Redick, J. A., et al. (2000). Electrical, morphological, and ultrastructurat remodeling and reverse remodeling in a canine model of chronic atrial fibrillation. Circulation, 102, 1454–1460.

    Article  PubMed  Google Scholar 

  9. Li, D., Shinagawa, K., Pang, L., Leung, T. K., Cardin, S., Wang, Z., et al. (2001). Effects of angiotensin converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation, 104, 2608–2614.

    Article  CAS  PubMed  Google Scholar 

  10. Nazir, S. A., & Lab, M. J. (1996). Mechanoelectric feedback in the atrium of the isolated guinea-pig heart. Cardiovascular Research, 32, 112–119.

    Article  CAS  PubMed  Google Scholar 

  11. Sánchez-Quintana, D., López-Mínguez, J. R., Pizarro, G., Murillo, M., & Cabrera, J. A. (2012). Triggers and anatomical substrates in the genesis and perpetuation of atrial fibrillation. Current Cardiology Reviews, 8, 310–326.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Duffy, H. S., & Wit, A. L. (2008). Is there a role for remodeled connexins in AF? No simple answers. Journal of Molecular and Cellular Cardiology, 44, 4–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. van der Velden, H. M., Ausma, J., Rook, M. B., Hellemons, A. J., van Veen, T. A., Allessie, M. A., et al. (2000). Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovascular Research, 46, 476–486.

    Article  PubMed  Google Scholar 

  14. Thijssen, V. L., Ausma, J., & Borgers, M. (2001). Structural remodelling during chronic atrial fibrillation: Act of programmed cell survival. Cardiovascular Research, 52, 14–24.

    Article  CAS  PubMed  Google Scholar 

  15. Kostin, S., Klein, G., Szalay, Z., Hein, S., Bauer, E. P., & Schaper, J. (2002). Structural correlate of atrial fibrillation in human patients. Cardiovascular Research, 54, 361–379.

    Article  CAS  PubMed  Google Scholar 

  16. Climent, V., Hurlé, A., Ho, S. Y., Sáenz-Santamaría, J., Nogales, A. G., & Sánchez-Quintana, D. (2004). Early morphologic changes following microwave endocardial ablation for treatment of chronic atrial fibrillation during mitral valve surgery. Journal of Cardiovascular Electrophysiology, 5, 1277–1283.

    Article  Google Scholar 

  17. Ausma, J., Wijffels, M., Thoné, F., Wouters, L., Allessie, M., & Borgers, M. (1997). Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation, 96, 3157–3163.

    Article  CAS  PubMed  Google Scholar 

  18. Spach, M. S. (2007). Mounting evidence that fibrosis generates a major mechanism for atrial fibrillation. Circulation Research, 101, 743–745.

    Article  CAS  PubMed  Google Scholar 

  19. Ausma, J., Wijffels, M., Thoné, F., Wouters, L., Allessie, M., & Borgers, M. (2008). Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts: Implication for the therapeutic effect of statin in atrial structural remodeling. Circulation, 117, 344–355.

    Article  Google Scholar 

  20. Fukui, A., Takahashi, N., Nakada, C., Masaki, T., Kume, O., Shinohara, T., et al. (2013). Role of leptin signaling in the pathogenesis of angiotensin II-mediated atrial fibrosis and fibrillation. Circulation, 6, 402–409.

    CAS  PubMed  Google Scholar 

  21. Ehrlich, J. R., Hohnloser, S. H., & Nattel, S. (2006). Role of angiotensin system and effects of its inhibition in atrial fibrillation: Clinical and experimental evidence. European Heart Journal, 27, 512–518.

    Article  CAS  PubMed  Google Scholar 

  22. Sun, Y., Ramires, F. J., & Weber, K. T. (1997). Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovascular Research, 35, 138–147.

    Article  CAS  PubMed  Google Scholar 

  23. Gu, J., Liu, X., Wang, Q. X., Tan, H. W., Guo, M., Jiang, W. F., et al. (2012). Angiotensin II increases CTGF expression via MAPKs/TGF-β1/TRAF6 pathway in atrial fibroblasts. Experimental Cell Research, 318, 2105–2115.

    Article  CAS  PubMed  Google Scholar 

  24. Boldt, A., Wetzel, U., Weigl, J., Garbade, J., Lauschke, J., Hindricks, G., et al. (2003). Expression of angiotensin II receptors in human left and right atrial tissue in atrial fibrillation with and without underlying mitral valve disease. Journal of the American College of Cardiology, 42, 1785–1792.

    Article  CAS  PubMed  Google Scholar 

  25. Reil, J. C., Hohl, M., Oberhofer, M., Kazakov, A., Kaestner, L., Mueller, P., et al. (2010). Cardiac Rac1 overexpression in mice creates a substrate for atrial arrhythmias characterized by structural remodelling. Cardiovascular Research, 87, 485–493.

    Article  CAS  PubMed  Google Scholar 

  26. Adam, O., Frost, G., Custodis, F., Sussman, M. A., Schäfers, H. J., Böhm, M., et al. (2007). Role of Rac1 GTPase activation in atrial fibrillation. Journal of the American College of Cardiology, 50, 359–367.

    Article  CAS  PubMed  Google Scholar 

  27. Adam, O., Lavall, D., Theobald, K., Hohl, M., Grube, M., Ameling, S., et al. (2010). Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation. Journal of the American College of Cardiology, 55, 469–480.

    Article  PubMed  Google Scholar 

  28. Tsai, C. T., Lin, J. L., Lai, L. P., Lin, C. S., & Huang, S. K. (2008). Membrane translocation of small GTPase Rac1 and activation of STAT1 and STAT3 in pacing-induced sustained atrial fibrillation. Heart Rhythm, 5, 1285–1293.

    Article  PubMed  Google Scholar 

  29. Gupta, D. K., Shah, A. M., Giugliano, R. P., Ruff, C. T., Antman, E. M., Grip, L. T., Deenadayalu, N., Hoffman, E., Patel, I., Shi, M., Mercuri, M., Mitrovic, V., Braunwald, E., Solomon, S. D. (2013). Effective aNticoaGulation with factor xA next GEneration in AF-thrombolysis in myocardial infarction 48 (ENGAGE AF-TIMI 48) Echocardiographic Study Investigators. Left atrial structure and function in atrial fibrillation: ENGAGE AF-TIMI 48. European Heart Journal, 35(22), 1457–1465.

  30. De Sisti, A., Leclercq, J. F., Halimi, F., Fiorello, P., Bertrand, C., & Attuel, P. (2014). Evaluation of time course and predicting factors of progression of paroxysmal or persistent atrial fibrillation to permanent atrial fibrillation. Pacing and Clinical Electrophysiology, 37(3), 345–355.

    Article  Google Scholar 

  31. Yoshida, K., Rabbani, A. B., Oral, H., Bach, D., Morady, F., & Chugh, A. (2011). Left atrial volume and dominant frequency of atrial fibrillation in patients undergoing catheter ablation of persistent atrial fibrillation. Journal of Interventional Cardiac Electrophysiology, 32, 155–161.

    Article  PubMed  Google Scholar 

  32. Wozakowska-Kapłon, B. (2005). Changes in left atrial size in patients with persistent atrial fibrillation: A prospective echocardiographic study with a 5-year follow-up period. International Journal of Cardiology, 101, 47–52.

    Article  PubMed  Google Scholar 

  33. Dostal, D. E., Hunt, R. A., Kule, C. E., Bhat, G. J., Karoor, V., McWhinney, C. D., et al. (1997). Molecular mechanisms of angiotensin II in modulating cardiac function: Intracardiac effects and signal transduction pathways. Journal of Molecular and Cellular Cardiology, 29, 2893–2902.

    Article  CAS  PubMed  Google Scholar 

  34. Sugden, P. H., & Clerk, A. (1997). Regulation of the ERK subgroup of MAP kinase cascades through G protein-coupled receptors. Cellular Signalling, 9, 337–351.

    Article  CAS  PubMed  Google Scholar 

  35. Ushio-Fukai, M., Alexander, R. W., Akers, M., & Griendling, K. K. (1998). Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. The Journal of Biological Chemistry, 73, 15022–15029.

    Article  Google Scholar 

  36. Zou, Y., Komuro, I., Yamazaki, T., Kudoh, S., Aikawa, R., Zhu, W., et al. (1998). Cell type-specific angiotensin II-evoked signal transduction pathways: Critical roles of Gbetagamma subunit, Src family, and Ras in cardiac fibroblasts. Circulation Research, 82, 337–345.

    Article  CAS  PubMed  Google Scholar 

  37. Brown, J. L., Stowers, L., Baer, M., Trejo, J., Coughlin, S., & Chant, J. (1997). Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Current Biology, 6, 598–605.

    Article  Google Scholar 

  38. Abo, A., Pick, E., Hall, A., Totty, N., Teahan, C. G., & Segal, A. W. (1991). Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature, 353, 668–670.

    Article  CAS  PubMed  Google Scholar 

  39. Dudley, S. C, Jr, Hoch, N. E., McCann, L. A., Honeycutt, C., Diamandopoulos, L., Fukai, T., et al. (2005). Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: Role of the NADPH and xanthine oxidases. Circulation, 112, 1266–1273.

    Article  CAS  PubMed  Google Scholar 

  40. Takemoto, M., Node, K., Nakagami, H., Liao, Y., Grimm, M., Takemoto, Y., et al. (2001). Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. The Journal of Clinical Investigation, 108, 1429–1437.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Adam, O., Neuberger, H. R., Böhm, M., & Laufs, U. (2008). Prevention of atrial fibrillation with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Circulation, 118, 1285–1293.

    Article  PubMed  Google Scholar 

  42. Yue, H., Li, W., Desnoyer, R., & Karnik, S. S. (2010). Role of nuclear unphosphorylated STAT3 in angiotensin II type 1 receptor-induced cardiac hypertrophy. Cardiovascular Research, 85, 90–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Paradis, P., Dali-Youcef, N., Paradis, F. W., Thibault, G., & Nemer, M. (2000). Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proceedings of the National Academy of Sciences of the United States of America, 97, 931–936.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have not declared any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Shan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, XD., Huang, JH. & Wang, HS. Angiotensin II Activates Signal Transducers and Activators of Transcription 3 via Rac1 in the Atrial Tissue in Permanent Atrial Fibrillation Patients with Rheumatic Heart Disease. Cell Biochem Biophys 71, 205–213 (2015). https://doi.org/10.1007/s12013-014-0186-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0186-z

Keywords

Navigation