Skip to main content
Log in

The Significance and Mechanism of Propofol on Treatment of Ischemia Reperfusion Induced Lung Injury in Rats

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study is aimed to investigate the efficacy and underlying the mechanism of propofol in treatment of ischemia reperfusion (IR)-induced lung injury in rats, providing a novel insight of therapeutic strategy for IR-induced lung injury. 120 healthy SD rats were selected and randomly divided into sham operation group, IR group, and propofol group (40 rats per group). Bronchoalveolar lavage fluid (BALF) protein content, serum protein content, lung permeability index, lung water content rate, methane dicarboxylic aldehyde (MDA) in lung tissue, superoxide dismutase (SOD), nitric oxide (NO), endothelin (ET-1), toll-like receptor 4 (TLR4), nuclear factor (NF-κB), and tumor necrosis factor-α (TNF-α) were examined and compared among different groups to evaluate the therapeutical effects of propofol on IR-induced lung injury and analyze the mechanism. In sham operation group, neither change in lung tissue nor pulmonary interstitial edema or alveolar wall damage was found under microscope; in IR group, marked pulmonary interstitial edema and alveolar wall damage complicated with inflammatory cell infiltration and hemorrhage were found; in propofol group, alveolar wall widening was observed, however, hemorrhage in alveolar cavity, inflammatory infiltration and tissue damage were less significant than in IR group. At 3 h after reperfusion, BALF protein content, lung permeability index, and lung water content rate were all significantly increased in IR group and propofol group, while the serum protein content was significantly lower than sham operation group (p < 0.05). Moreover, we found that the change of above parameters in propofol group was less significant than in IR group (p < 0.05). No statistically significant difference was found in ET-1 levels in different groups (p > 0.05). In contrast, MDA and NO in IR group and propofol group were significantly increased, while SOD activity was significantly decreased (p < 0.05). Furthermore, the change of above parameters in propofol group was less significant than in IR group (p < 0.05). In addition, mRNAs of TLR4, NF-κB, and TNF-α were significantly increased in IR group and propofol group (p < 0.05) with more significant change in IR group compared with propofol group (p < 0.05). Propofol has protective effects against IR-induced lung injury by improving activity of oxygen radical and restoring NO/ET-1 dynamic balance. Besides, regulation of TLR4, NF-κB, and TNF-α by propofol also play important role in alleviating IR-induced lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ardalan, M. R., Nasri, H., & Rafieian-Kopaei, M. (2013). Comment on: Protective role of recombinant human erythropoietin in kidney and lung injury following renal bilateral ischemia-reperfusion in rat model. International Journal of Preventive Medicine, 4(10), 1226–1227. Epub 2013/12/10.

    PubMed Central  PubMed  Google Scholar 

  2. Azarkish, F., Nematbakhsh, M., Fazilati, M., Talebi, A., Pilehvarian, A. A., Pezeshki, Z., et al. (2013). N-acetylcysteine prevents kidney and lung disturbances in renal ischemia/reperfusion injury in rat. International Journal of Preventive Medicine, 4(10), 1139–1146. Epub 2013/12/10.

    PubMed Central  PubMed  Google Scholar 

  3. Bach, H. H. T., Laporte, H. M., Wong, Y. M., Gamelli, R. L., & Majetschak, M. (2013). Proteasome inhibition prolongs survival during lethal hemorrhagic shock in rats. The Journal of Trauma and Acute Care Surgery, 74(2), 499–507. Epub 2013/01/29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bayer, J., Das, N. A., Baisden, C. E., Rani, M., DeArmond, D. T., & Peters, J. I. (2013). Effect of inhaled tacrolimus on ischemia reperfusion injury in rat lung transplant model. The Journal of Thoracic and Cardiovascular Surgery, 146(5), 1213–1219.

    Article  CAS  PubMed  Google Scholar 

  5. Brochner, A. C., Dagnaes-Hansen, F., Hojberg-Holm, J., & Toft, P. (2014). The inflammatory response in blood and in remote organs following acute kidney injury. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 122(5), 399–404. Epub 2013/09/17.

    Article  CAS  PubMed  Google Scholar 

  6. Cai, Y., Xu, H., Yan, J., Zhang, L., & Lu, Y. (2014). Molecular targets and mechanism of action of dexmedetomidine in treatment of ischemia/reperfusion injury. Molecular Medicine Reports, 9(5), 1542–1550. Epub 2014/03/15.

    CAS  PubMed  Google Scholar 

  7. Causey, M. W., Miller, S., Hoffer, Z., Hempel, J., Stallings, J. D., Jin, G., et al. (2013). Beneficial effects of histone deacetylase inhibition with severe hemorrhage and ischemia-reperfusion injury. The Journal of Surgical Research, 184(1), 533–540. Epub 2013/05/21.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, L. N., Yang, X. H., Nissen, D. H., Chen, Y. Y., Wang, L. J., Wang, J. H., et al. (2013). Dysregulated renin-angiotensin system contributes to acute lung injury caused by hind-limb ischemia-reperfusion in mice. Shock, 40(5), 420–429. Epub 2013/08/02.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, Y., Sun, W., Gao, R., Su, Y., Umehara, H., Dong, L., et al. (2013). The role of high mobility group box chromosomal protein 1 in rheumatoid arthritis. Rheumatology (Oxford), 52(10), 1739–1747. Epub 2013/04/16.

    Article  CAS  Google Scholar 

  10. Chu, S. J., Huang, K. L., Wu, S. Y., Ko, F. C., Wu, G. C., Li, R. Y., et al. (2013). Systemic administration of FC-77 dampens ischemia-reperfusion-induced acute lung injury in rats. Inflammation, 36(6), 1383–1392. Epub 2013/06/29.

    Article  CAS  PubMed  Google Scholar 

  11. Dong, B., Stewart, P. W., & Egan, T. M. (2013). Postmortem and ex vivo carbon monoxide ventilation reduces injury in rat lungs transplanted from non-heart-beating donors. The Journal of Thoracic and Cardiovascular Surgery, 146(2), 429–436 e1. Epub 2012/12/25.

    Article  CAS  PubMed  Google Scholar 

  12. Dong, L. Y., Zheng, J. H., Qiu, X. X., Yu, M., Ye, Y. Z., Shi, S., et al. (2013). Ischemic preconditioning reduces deep hypothermic circulatory arrest cardiopulmonary bypass induced lung injury. European Review for Medical and Pharmacological Sciences, 17(13), 1789–1799. Epub 2013/07/16.

    PubMed  Google Scholar 

  13. Erne, B. V., Jungraithmayr, W., Buschmann, J., Arni, S., Weder, W., & Inci, I. (2013). Effect of N-acetylcysteine on acute allograft rejection after rat lung transplantation. The Annals of Thoracic Surgery, 95(3), 1021–1027. Epub 2013/01/15.

    Article  PubMed  Google Scholar 

  14. Fernandez, L. G., Sharma, A. K., LaPar, D. J., Kron, I. L., & Laubach, V. E. (2013). Adenosine A1 receptor activation attenuates lung ischemia-reperfusion injury. The Journal of Thoracic and Cardiovascular Surgery, 145(6), 1654–1659. Epub 2013/02/13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Forgiarini, L. A, Jr, Forgiarini, L. F., da Rosa, D. P., Mariano, R., Ulbrich, J. M., & Andrade, C. F. (2013). Endobronchial perfluorocarbon administration decreases lung injury in an experimental model of ischemia and reperfusion. The Journal of Surgical Research, 183(2), 835–840. Epub 2013/02/26.

    Article  CAS  PubMed  Google Scholar 

  16. Garbaisz, D., Turoczi, Z., Fulop, A., Rosero, O., Aranyi, P., Onody, P., et al. (2013). Therapeutic option for managing lung injury induced by infrarenal aortic cross-clamping. The Journal of Surgical Research, 185(1), 469–476. Epub 2013/06/12.

    Article  CAS  PubMed  Google Scholar 

  17. Gauter-Fleckenstein, B., Reboucas, J. S., Fleckenstein, K., Tovmasyan, A., Owzar, K., Jiang, C., et al. (2014). Robust rat pulmonary radioprotection by a lipophilic Mn N-alkylpyridylporphyrin, MnTnHex-2-PyP(5+). Redox biology, 2, 400–410. Epub 2014/03/14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gerlach, U. A., Atanasov, G., Wallenta, L., Polenz, D., Reutzel-Selke, A., Kloepfel, M., et al. (2014). Short-term TNF-alpha inhibition reduces short-term and long-term inflammatory changes post-ischemia/reperfusion in rat intestinal transplantation. Transplantation, 97(7), 732–739. Epub 2014/03/07.

    Article  CAS  PubMed  Google Scholar 

  19. Gormus, Z. I., Celik, J. B., Ergene, N., Gormus, N., & Baltaci, A. K. (2013). Does preoperative administration of allopurinol protect the lungs from ischemia-reperfusion injury occuring during cardiopulmonary bypass? Bratislavske Lekarske Listy, 114(10), 561–565. Epub 2013/10/26.

    CAS  PubMed  Google Scholar 

  20. He, G. Z., Zhou, K. G., Zhang, R., Wang, Y. K., & Chen, X. F. (2012). Impact of intestinal ischemia/reperfusion and lymph drainage on distant organs in rats. WJG: World Journal of Gastroenterology, 18(48), 7271–7278. Epub 2013/01/18.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Herrmann, G., Knudsen, L., Madershahian, N., Muhlfeld, C., Frank, K., Rahmanian, P., et al. (2014). Effects of exogenous surfactant on the non-heart-beating donor lung graft in experimental lung transplantation—a stereological study. Journal of Anatomy, 224(5), 594–602. Epub 2014/02/18.

    Article  PubMed  Google Scholar 

  22. Hu, R., Xu, H., Jiang, H., Zhang, Y., & Sun, Y. (2013). The role of TLR4 in the pathogenesis of indirect acute lung injury. Front Biosci (Landmark Ed), 18, 1244–1255. Epub 2013/06/12.

    Article  CAS  Google Scholar 

  23. Huang, X. L., Liu, Y., Zhou, J. L., Qin, Y. C., Ren, X. B., Zhou, X. H., et al. (2013). Role of sulfur dioxide in acute lung injury following limb ischemia/reperfusion in rats. Journal of Biochemical and Molecular Toxicology, 27(8), 389–397. Epub 2013/06/27.

    Article  CAS  PubMed  Google Scholar 

  24. Huerta, L., Rancan, L., Simon, C., Isea, J., Vidaurre, E., Vara, E., et al. (2013). Ischaemic preconditioning prevents the liver inflammatory response to lung ischaemia/reperfusion in a swine lung autotransplant model. European Journal of Cardio-Thoracic Surgery: Official Journal of the European Association for Cardio-thoracic Surgery, 43(6), 1194–1201. Epub 2012/11/28.

    Article  Google Scholar 

  25. Ji, P., Jiang, T., Wang, M., Wang, R., Zhang, L., & Li, Y. (2013). Denervation of capsaicin-sensitive C fibers increases pulmonary inflammation induced by ischemia-reperfusion in rabbits. The Journal of Surgical Research, 184(2), 782–789. Epub 2013/07/11.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, L., Li, L., Shen, J., Qi, Z., & Guo, L. (2014). Effect of dexmedetomidine on lung ischemia-reperfusion injury. Molecular Medicine Reports, 9(2), 419–426. Epub 2013/12/19.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Kali, A., Tang, R. L., Kumar, A., Min, J. K., & Dharmakumar, R. (2013). Detection of acute reperfusion myocardial hemorrhage with cardiac MR imaging: T2 versus T2. Radiology, 269(2), 387–395. Epub 2013/07/13.

    Article  PubMed  Google Scholar 

  28. Kannan, L., Kis-Toth, K., Yoshiya, K., Thai, T. H., Sehrawat, S., Mayadas, T. N., et al. (2013). R-spondin3 prevents mesenteric ischemia/reperfusion-induced tissue damage by tightening endothelium and preventing vascular leakage. Proceedings of the National Academy of Sciences of the United States of America, 110(35), 14348–14353. Epub 2013/08/15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kurahashi, K. (2013). Mechanical ventilation during surgery -can we prevent postoperative lung injury?-. Masui The Japanese Journal of Anesthesiology, 62(5), 563–572. Epub 2013/06/19.

    PubMed  Google Scholar 

  30. Li, C., Li, Y. S., Xu, M., Wen, S. H., Yao, X., Wu, Y., et al. (2013). Limb remote ischemic preconditioning for intestinal and pulmonary protection during elective open infrarenal abdominal aortic aneurysm repair: A randomized controlled trial. Anesthesiology, 118(4), 842–852. Epub 2013/01/29.

    Article  CAS  PubMed  Google Scholar 

  31. Li, H. B., Wang, G. Z., Gong, J., Wu, Z. Y., Guo, S., Li, B., et al. (2013). BML-111 attenuates hemorrhagic shock-induced acute lung injury through inhibiting activation of mitogen-activated protein kinase pathway in rats. The Journal of Surgical Research, 183(2), 710–719. Epub 2013/04/06.

    Article  CAS  PubMed  Google Scholar 

  32. Li, L. K., Cheng, W., Liu, D. H., Zhang, J., Zhu, Y. B., Qiao, C. H., et al. (2013). A novel, recovery, and reproducible minimally invasive cardiopulmonary bypass model with lung injury in rats. Chinese Medical Journal, 126(24), 4715–4719. Epub 2013/12/18.

    CAS  PubMed  Google Scholar 

  33. Li, X. J., Zhang, G. X., Sun, N., Sun, Y., Yang, L. Z., & Du, Y. J. (2013). Protective effects of erythropoietin on endotoxin-related organ injury in rats. Journal of Huazhong University of Science and Technology Medical Sciences = Hua Zhong Ke Ji Da Xue Xue Bao Yi Xue Ying De Wen ban = Huazhong Keji Daxue Xuebao Yixue Yingdewen Ban, 33(5), 680–686.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuezheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, P., Yang, N., Zhang, X. et al. The Significance and Mechanism of Propofol on Treatment of Ischemia Reperfusion Induced Lung Injury in Rats. Cell Biochem Biophys 70, 1527–1532 (2014). https://doi.org/10.1007/s12013-014-0088-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0088-0

Keywords

Navigation