Skip to main content

Advertisement

Log in

Quercetin Potentiates the Antitumor Activity of Rituximab in Diffuse Large B-Cell Lymphoma by Inhibiting STAT3 Pathway

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

STAT3 pathway plays an important role in the growth of diffuse large B-cell lymphoma (DLBCL) cells. Here we investigated the antitumor activity of Quercetin, a flavonoid compound, in combination with rituximab in DLBCL cell lines in vitro. We found that Quercetin synergistically enhanced rituximab-induced growth inhibition and apoptosis in DLBCL cell lines. Moreover, we found Quercetin exerted inhibitory activity against STAT3 pathway and downregulated the expression of survival genes. These results suggest that combining the Quercetin with rituximab may present an attractive and potentially effective way for the treatment of DLBCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pileri, S. A. (1997). A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood, 89(11), 3909–3918.

    Google Scholar 

  2. Cheson, B. D., & Leonard, J. P. (2008). Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. New England Journal of Medicine, 359(6), 613–626.

    Article  PubMed  CAS  Google Scholar 

  3. Coiffier, B., et al. (2002). CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. New England Journal of Medicine, 346(4), 235–242.

    Article  PubMed  CAS  Google Scholar 

  4. Hiddemann, W., et al. (2005). Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood, 106(12), 3725–3732.

    Article  PubMed  CAS  Google Scholar 

  5. Pfreundschuh, M., et al. (2006). CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: A randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncology, 7(5), 379–391.

    Article  CAS  Google Scholar 

  6. Gibellini, L., et al. (2011). Quercetin and cancer chemoprevention. Evidence-based Complementary and Alternative Medicine 2011, 591356.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Harwood, M., et al. (2007). A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food and Chemical Toxicology, 45(11), 2179–2205.

    Article  PubMed  CAS  Google Scholar 

  8. Chou, T. C., & Talalay, P. (1984). Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation, 22, 27–55.

    Article  PubMed  CAS  Google Scholar 

  9. Vega, M. I., et al. (2004). Rituximab inhibits p38 MAPK activity in 2F7 B NHL and decreases IL-10 transcription: Pivotal role of p38 MAPK in drug resistance. Oncogene, 23(20), 3530–3540.

    Article  PubMed  CAS  Google Scholar 

  10. Suzuki, E., Umezawa, K., & Bonavida, B. (2007). Rituximab inhibits the constitutively activated PI3K-Akt pathway in B-NHL cell lines: Involvement in chemosensitization to drug-induced apoptosis. Oncogene, 26(42), 6184–6193.

    Article  PubMed  CAS  Google Scholar 

  11. Mendoza, E. E., & Burd, R. (2011). Quercetin as a systemic chemopreventive agent: Structural and functional mechanisms. Mini Reviews in Medicinal Chemistry, 11(14), 1216–1221.

    PubMed  CAS  Google Scholar 

  12. Russo, M., et al. (2012). The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochemical Pharmacology, 83(1), 6–15.

    Article  PubMed  CAS  Google Scholar 

  13. Middleton, E., Jr., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52(4), 673–751.

    PubMed  CAS  Google Scholar 

  14. Jacquemin, G., et al. (2012). Quercetin-mediated Mcl-1 and survivin downregulation restores TRAIL-induced apoptosis in non-Hodgkin’s lymphoma B cells. Haematologica, 97(1), 38–46.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Darnell, J. E., Jr. (1997). STATs and gene regulation. Science, 277(5332), 1630–1635.

    Article  PubMed  CAS  Google Scholar 

  16. Stark, G. R., et al. (1998). How cells respond to interferons. Annual Review of Biochemistry, 67, 227–264.

    Article  PubMed  CAS  Google Scholar 

  17. Yu, H., & Jove, R. (2004). The STATs of cancer—new molecular targets come of age. Nature Reviews Cancer, 4(2), 97–105.

    Article  PubMed  CAS  Google Scholar 

  18. Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: A leading role for STAT3. Nature Reviews Cancer, 9(11), 798–809.

    Article  PubMed  CAS  Google Scholar 

  19. Ding, B. B., et al. (2008). Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood, 111(3), 1515–1523.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Scuto, A., et al. (2011). STAT3 inhibition is a therapeutic strategy for ABC-like diffuse large B-cell lymphoma. Cancer Research, 71(9), 3182–3188.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Muthian, G., & Bright, J. J. (2004). Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. Journal of Clinical Immunology, 24(5), 542–552.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, Y. W., et al. (2013). Cardioprotective effects of quercetin in cardiomyocyte under ischemia/reperfusion injury. Evidence-based Complementary and Alternative Medicine, 2013, 364519.

    PubMed  PubMed Central  Google Scholar 

  23. Kleemann, R., et al. (2011). Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis, 218(1), 44–52.

    Article  PubMed  CAS  Google Scholar 

  24. Choi, J. S., et al. (2009). Blockade of oxidized LDL-triggered endothelial apoptosis by quercetin and rutin through differential signaling pathways involving JAK2. Journal of Agriculture and Food Chemistry, 57(5), 2079–2086.

    Article  CAS  Google Scholar 

  25. Li, J. M., et al. (2013). Quercetin preserves beta-cell mass and function in fructose-induced hyperinsulinemia through modulating pancreatic Akt/Foxo1 activation. Evidence-based Complementary and Alternative Medicine, 2013, 303902.

    PubMed  PubMed Central  Google Scholar 

  26. Michaud-Levesque, J., Bousquet-Gagnon, N., & Beliveau, R. (2012). Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration. Experimental Cell Research, 318(8), 925–935.

    Article  PubMed  CAS  Google Scholar 

  27. Qin, Y., et al. (2012). Quercetin affects leptin and its receptor in human gastric cancer MGC-803 cells and JAK-STAT pathway. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 28(1), 12–16.

    PubMed  CAS  Google Scholar 

  28. Cao, H. H., et al. (2014). Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochemical Pharmacology, 87(3), 424–434.

    Article  PubMed  CAS  Google Scholar 

  29. Niu, G., et al. (2002). Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene, 21(46), 7001–7010.

    Article  PubMed  CAS  Google Scholar 

  30. Aoki, Y., Feldman, G. M., & Tosato, G. (2003). Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood, 101(4), 1535–1542.

    Article  PubMed  CAS  Google Scholar 

  31. Ferry, D. R., et al. (1996). Phase I clinical trial of the flavonoid quercetin: Pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clinical Cancer Research, 2(4), 659–668.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Yu.

Additional information

Xin Li and Xinhua Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, X., Zhang, M. et al. Quercetin Potentiates the Antitumor Activity of Rituximab in Diffuse Large B-Cell Lymphoma by Inhibiting STAT3 Pathway. Cell Biochem Biophys 70, 1357–1362 (2014). https://doi.org/10.1007/s12013-014-0064-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0064-8

Keywords

Navigation