Skip to main content

Advertisement

Log in

MiR-29b Protects Dorsal Root Ganglia Neurons from Diabetic Rat

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Accumulated evidences implicated that microRNAs may be involved in diabetic neuropathy. Here, we investigated miR-29’s roles in primary isolated dorsal root ganglion (DRG) neurons from STZ-induced diabetic rats. First, miR-29b was found down-regulated after STZ-injection. Inhibitions were increased with time course. Down-regulation of miR-29b was associated with higher apoptosis rate and more serious axonal swelling. Meanwhile, axonogeneration genes were inhibited, whereas neurodegenerative genes were stimulated. Restoration of miR-29b by mimic experiment could reverse the above neuropathy. Furthermore, western blot analysis disclosed that miR-29b could abolish Smad3 activation. In conclusion, the present study identifies that miR-29b could protect DRG from diabetic rats. This protective effects suggested potential therapeutic application of miR-29b in diabetic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deshpande, A. D., Harris-Hayes, M., & Schootman, M. (2008). Epidemiology of diabetes and diabetes-related complications. Physical Therapy, 88, 1254–1264.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boulton, A. J., Vinik, A. I., Arezzo, J. C., Bril, V., Feldman, E. L., & American Diabetes Association. (2005). Diabetic neuropathies A statement by the American Diabetes Association. Diabetes Care, 28, 956–962.

    Article  PubMed  Google Scholar 

  3. Said, G., Slama, G., & Selva, J. (1983). Progressive centripetal degeneration of axons in small fibre diabetic neuropathy. Brain, 106, 791–807.

    Article  PubMed  Google Scholar 

  4. Dolman, C. L. (1963). The morbid anatomy of diabetic neuropathy. Neurology, 13, 135–144.

    Article  PubMed  CAS  Google Scholar 

  5. Watkins, P. J., Gayle, C., Alsanjari, N., et al. (1995). Severe sensory-autonomic neuropathy and endocrinopathy in insulin-dependent diabetes. Quarterly Journal of Medicine, 88, 795–804.

    CAS  Google Scholar 

  6. Kishi, M., Tanabe, J., Schmelzer, J. D., & Low, P. A. (2002). Morphometry of dorsal root ganglion in chronic experimental diabetic neuropathy. Diabetes, 51, 819–824.

    Article  PubMed  CAS  Google Scholar 

  7. Schmeichel, A. M., Schmelzer, J. D., & Low, P. A. (2003). Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes, 52, 165–171.

    Article  PubMed  CAS  Google Scholar 

  8. Pickup, J. C. (2004). Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care, 27, 813–823.

    Article  PubMed  Google Scholar 

  9. Jeyaseelan, K., Lim, K. Y., & Armugam, A. (2008). MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke, 39, 959–966.

    Article  PubMed  CAS  Google Scholar 

  10. Dharap, A., Bowen, K., Place, R., Li, L. C., & Vemuganti, R. (2009). Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. Journal of Cerebral Blood Flow and Metabolism, 29, 675–687.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Tan, K. S., Armugam, A., Sepramaniam, S., Lim, K. Y., Setyowati, K. D., et al. (2009). Expression profile of microRNAs in young stroke patients. PLoS ONE, 4, e7689.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yin, K. J., Deng, Z., Huang, H., Hamblin, M., & Xie, C. (2010). miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiology of Diseases, 38, 17–26.

    Article  CAS  Google Scholar 

  13. Siegel, C., Li, J., Liu, F., Benashski, S. E., & McCullough, L. D. (2011). miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proceedings of National Academy of Sciences, 108, 11662–11667.

    Article  CAS  Google Scholar 

  14. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., & Bartel, D. P. (2002). MicroRNAs in plants. Genes & Development, 16, 1616–1626.

    Article  CAS  Google Scholar 

  15. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  16. Kloosterman, W. P., & Plasterk, R. H. (2006). The diverse functions of microRNAs in animal development and disease. Developmental Cell, 11, 441–450.

    Article  PubMed  CAS  Google Scholar 

  17. Bushati, N., & Cohen, S. M. (2007). microRNA functions. Annual Review of Cell and Developmental Biology, 23, 175–205.

    Article  PubMed  CAS  Google Scholar 

  18. Rana, T. M. (2007). Illuminating the silence: Understanding the structure and function of small RNAs. Nature Reviews Molecular Cell Biology, 8, 23–36.

    Article  PubMed  CAS  Google Scholar 

  19. Eulalio, A., Huntzinger, E., & Izaurralde, E. (2008). Getting to the root of miRNA mediated gene silencing. Cell, 132, 9–14.

    Article  PubMed  CAS  Google Scholar 

  20. Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of posttranscriptional regulation by microRNAs: Are the answers in sight? Nature Reviews Genetics, 9, 102–114.

    Article  PubMed  CAS  Google Scholar 

  21. Winter, J., Jung, S., Keller, S., Gregory, R. I., & Diederichs, S. (2009). Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nature Cell Biology, 11, 228–234.

    Article  PubMed  CAS  Google Scholar 

  22. Meijer, H. A., Kong, Y. W., Lu, W. T., Wilczynska, A., Spriggs, R. V., et al. (2013). Translational repression and eIF4A2 activity are critical for microRNA mediated gene regulation. Science, 340, 82–85.

    Article  PubMed  CAS  Google Scholar 

  23. Maciotta, S., Meregalli, M., & Torrente, Y. (2013). The involvement of microRNAs in neurodegenerative diseases. Frontiers in Cellular Neuroscience, 7, 265.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., & Davidson, B. L. (2008). The bifunctional microRNAmiR-9, miR-9∗ regulates REST and CoREST and is down-regulated in Huntington’s disease. Journal of Neuroscience, 28, 14341–14346.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Geekiyanage, H., & Chan, C. (2011). MicroRNA-137, 181c regulates serine palmitoyltransferase and inturnamyloid beta, novel targets in sporadic Alzheimer’s disease. Journal of Neuroscience, 31, 14820–14830.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Huang, T. J., Verkhratsky, A., & Fernyhough, P. (2005). Insulin enhances mitochondrial inner membrane potential and increases ATP levels through phosphoinositide 3-kinase in adult sensory neurons. Molecular and Cellular Neuroscience, 28, 42–54.

    Article  PubMed  CAS  Google Scholar 

  27. Khanna, S., Rink, C., Ghoorkhanian, R., Gnyawali, S., Heigel, M., Wijesinghe, D. S., et al. (2013). Loss of miR-29b following acute ischemic stroke contributes to neural cell death and infarct size. Journal of Cerebral Blood Flow and Metabolism, 33, 1197–1206.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Hebert, S. S., Horre, K., Nicolai, L., Papadopoulou, A. S., Mandemakers, W., Silahtaroglu, A. N., et al. (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proceedings of the National Academy of Sciences of the United States of America, 105, 6415–6420.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Kole, A. J., Swahari, V., Hammond, S. M., & Deshmukh, M. (2011). miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes & Development, 25, 125–130.

    Article  CAS  Google Scholar 

  30. Kim, H., Park, J. S., Choi, Y. J., Kim, M. O., Huh, Y. H., Kim, S. W., et al. (2009). Bone marrow mononuclear cells have neurovascular tropism and improve diabetic neuropathy. Stem Cells, 27, 1686–1696.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Barber, A. J., Lieth, E., Khim, S. A., Antonetti, D. A., Buchanan, A. G., & Gardner, T. W. (1998). Neural apoptosis in the retina during experimental and human diabetes: early onset and effect of insulin. Journal of Clinical Investigation, 102, 783–791.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Russell, J. W., Sullivan, K. A., Windebank, A. J., Herrmann, D. N., & Feldman, E. L. (1999). Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiology of Diseases, 6, 347–363.

    Article  CAS  Google Scholar 

  33. Jeon, E. J., Lee, K. Y., Choi, N. S., Lee, M. H., Kim, H. N., Jin, Y. H., et al. (2006). Bone morphogenetic protein-2 stimulates Runx2 acetylation. Journal of Biological Chemistry, 281, 16502–16511.

    Article  PubMed  CAS  Google Scholar 

  34. Maeda, S., Hayashi, M., Komiya, S., Imamura, T., & Miyazono, K. (2004). Endogenous TGF-β signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO Journal, 23, 552–563.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Ikenoue, T., Jingushi, S., Urabe, K., Okazaki, K., & Iwamoto, Y. (1999). Inhibitory effects of activin-a on osteoblast differentiation during cultures of fetal rat calvarial cells. Journal of Cellular Biochemistry, 75, 206–214.

    Article  PubMed  CAS  Google Scholar 

  36. Eijken, M., Swagemakers, S., Koedam, M., Steenbergen, C., Derkx, P., Uitterlinden, A. G., et al. (2007). The activin A-follistatin system: Potent regulator of human extracellular matrix mineralization. FASEB Journal, 21, 2949–2960.

    Article  PubMed  Google Scholar 

  37. Lynch, M. P., Stein, J. L., Stein, G. S., & Lian, J. B. (1995). The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: Modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Experimental Cell Research, 216, 35–45.

    Article  PubMed  CAS  Google Scholar 

  38. Houstis, N., Rosen, E. D., & Lander, E. S. (2006). Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature, 440, 944–948.

    Article  PubMed  CAS  Google Scholar 

  39. Hirosumi, J., Tuncman, G., Chang, L., Görgün, C. Z., Uysal, K. T., Maeda, K., et al. (2002). A central role for JNK in obesity and insulin resistance. Nature, 420, 333–336.

    Article  PubMed  CAS  Google Scholar 

  40. Kamata, H., Honda, S., Maeda, S., Chang, L., Hirata, H., & Karin, M. (2005). Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell, 120, 649–661.

    Article  PubMed  CAS  Google Scholar 

  41. Lee, Y. H., Giraud, J., Davis, R. J., & White, M. F. (2003). c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. Journal of Biological Chemistry, 278, 2896–2902.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gong, X., Han, S. et al. MiR-29b Protects Dorsal Root Ganglia Neurons from Diabetic Rat. Cell Biochem Biophys 70, 1105–1111 (2014). https://doi.org/10.1007/s12013-014-0029-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0029-y

Keywords

Navigation