Skip to main content

Advertisement

Log in

Calcitonin Gene-Related Peptide Inhibits Osteolytic Factors Induced by Osteoblast In Co-Culture System with Breast Cancer

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Recently, it was found that α-Calcitonin gene-related peptide (CGRP) was associated with breast cancer metastases, but the role of CGRP in interaction between breast cancer and osteoblast during bone metastases is not clear. Here, we investigated the effect of CGRP on osteoblast in co-culture system with breast cancer. Using a breast cancer–osteoblast co-culture system, we chose MDA-MB-231 for breast cancer and human cell line MG-63 for osteoblast. CGRP was added to this co-culture system. The expression levels of the Runx2, RANK1, and osteoprotegerin (OPG) were analyzed using real-time PCR and western blot. CGRP receptors were investigated by immunofluorescence. We found that breast cancer cells cause osteolysis lesions by upregulating Runx2 expression, decreasing OPG expression, and increasing RANKL expression in osteoblasts. Our data prove that CGRP can regulate osteoclast coupling genes in osteoblast by increasing OPG, and decreasing RANKL and Runx2 expressions in a time-dependent manner; and inhibit those osteolytic factors induced by interaction between breast cancer cells and osteoblast. This inhibition could be abolished by the CGRP antagonist, CGRP8–37. In conclusion, calcitonin receptor-like receptor is the key player for CGRP’s effect in this co-culture system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mercer, R. R., Miyasaka, C., & Mastro, A. M. (2004). Metastatic breast cancer cells suppress osteoblast adhesion and differentiation. Clinical & Experimental Metastasis, 21(5), 427–435.

    Article  CAS  Google Scholar 

  2. Virk, M. S., & Lieberman, J. R. (2007). Tumor metastasis to bone. Arthritis Research & Therapy, 9(S1), S5.

    Article  Google Scholar 

  3. Papantoniou, V., Sotiropoulou, E., Valsamaki, P., Tsaroucha, A., Sotiropoulou, M., Ptohis, N., et al. (2011). Breast density, scintimammographic (99m)Tc(V)DMSA uptake, and calcitonin gene related peptide (CGRP) expression in mixed invasive ductal associated with extensive in situ ductal carcinoma (IDC + DCIS) and pure invasive ductal carcinoma (IDC): correlation with estrogen receptor (ER) status, proliferation index Ki-67, and histological grade. Breast Cancer, 18(4), 286–291.

    Article  PubMed  Google Scholar 

  4. Rosenfeld, M. G., Mermod, J. J., Amara, S. G., Swanson, L. W., Sawchenko, P. E., Rivier, J., et al. (1983). Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, 304(5922), 129–135.

    Article  PubMed  CAS  Google Scholar 

  5. Yallampalli, C., Dong, Y. L., & Wimalawansa, S. J. (1996). Calcitonin gene-related peptide reverses the hypertension and significantly decreases the fetal mortality in pre-eclampsia rats induced by N(G)-nitro-l-arginine methyl ester. Human Reproduction, 11(4), 895–899.

    Article  CAS  Google Scholar 

  6. Petersen, K. A., Birk, S., Doods, H., Edvinsson, L., & Olesen, J. (2004). Inhibitory effect of BIBN4096BS on cephalic vasodilatation induced by CGRP or transcranial electrical stimulation in the rat. British Journal of Pharmacology, 143(6), 697–704.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Lu, J. T., Son, Y. J., Lee, J., Jetton, T. L., Shiota, M., Moscoso, L., et al. (1999). Mice lacking alpha-calcitonin gene-related peptide exhibit normal cardiovascular regulation and neuromuscular development. Molecular and Cellular Neuroscience, 14(2), 99–120.

    Article  PubMed  CAS  Google Scholar 

  8. Ballica, R., Valentijn, K., Khachatryan, A., Guerder, S., Kapadia, S., Gundberg, C., et al. (1999). Targeted expression of calcitonin gene-related peptide to osteoblasts increases bone density in mice. Journal of Bone and Mineral Research, 14(7), 1067–1074.

    Article  PubMed  CAS  Google Scholar 

  9. Anders, C. K., Zagar, T. M., & Carey, L. A. (2013). The management of early-stage and metastatic triple-negative breast cancer: A review. Hematology/Oncology Clinics of North America, 27(4), 737–749.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mundy, G. R. (1997). Mechanisms of bone metastasis. Cancer, 80(8S), 1546–1556.

    Article  PubMed  CAS  Google Scholar 

  11. Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89(5), 765–771.

    Article  PubMed  CAS  Google Scholar 

  12. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89(5), 755–764.

    Article  PubMed  CAS  Google Scholar 

  13. Gao, Y. H., Shinki, T., Yuasa, T., Kataoka-Enomoto, H., Komori, T., Suda, T., et al. (1998). Potential role of cbfa1, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: Regulation of mRNA expression of osteoclast differentiation factor (ODF). Biochemical and Biophysical Research Communications, 252(3), 697–702.

    Article  PubMed  CAS  Google Scholar 

  14. Liu, W., Toyosawa, S., Furuichi, T., Kanatani, N., Yoshida, C., Liu, Y., et al. (2001). Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. Journal of Cell Biology, 155(1), 157–166.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Geoffroy, V., Kneissel, M., Fournier, B., Boyde, A., & Matthias, P. (2002). High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage. Molecular and Cellular Biology, 22(17), 6222–6233.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Lüthy, R., et al. (1997). Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell, 89(2), 309–319.

    Article  PubMed  CAS  Google Scholar 

  17. Bucay, N., Sarosi, I., Dunstan, C. R., Morony, S., Tarpley, J., Capparelli, C., et al. (1998). Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes & Development, 12(9), 1260–1268.

    Article  CAS  Google Scholar 

  18. Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93(2), 165–176.

    Article  PubMed  CAS  Google Scholar 

  19. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., et al. (1998). Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3597–3602.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Katagiri, T., & Takahashi, N. (2002). Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Diseases, 8(3), 147–159.

    Article  PubMed  CAS  Google Scholar 

  21. Bu, G., Lu, W., Liu, C. C., Selander, K., Yoneda, T., Hall, C., et al. (2008). Breast cancer-derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: Implication for breast cancer osteolytic bone metastases. International Journal of Cancer, 123(5), 1034–1042.

    Article  CAS  Google Scholar 

  22. Zhu, J., Jia, X., Xiao, G., Kang, Y., Partridge, N. C., & Qin, L. (2007). EGF-like ligands stimulate osteoclastogenesis by regulating expression of osteoclast regulatory factors by osteoblasts: Implications for osteolytic bone metastases. Journal of Biological Chemistry, 282(37), 26656–26664.

    Article  PubMed  CAS  Google Scholar 

  23. Villa, I., Mrak, E., Rubinacci, A., Ravasi, F., & Guidobono, F. (2006). CGRP inhibits steoprotegerin production in human osteoblast-like cells via cAMP/PKA-dependent pathway. American Journal of Physiology. Cell Physiology, 291(3), C529–C537.

    Article  PubMed  CAS  Google Scholar 

  24. Ishizuka, K., Hirukawa, K., Nakamura, H., & Togari, A. (2005). Inhibitory effect of CGRP on osteoclast formation by mouse bone marrow cells treated with isoproterenol. Neuroscience Letters, 379(1), 47–51.

    Article  PubMed  CAS  Google Scholar 

  25. Recober, A., & Goadsby, P. J. (2010). Calcitonin gene-related peptide: A molecular link between obesity and migraine? Drug News & Perspectives, 23(2), 112–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-long Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Ning, Ll., Wang, Zy. et al. Calcitonin Gene-Related Peptide Inhibits Osteolytic Factors Induced by Osteoblast In Co-Culture System with Breast Cancer. Cell Biochem Biophys 70, 1097–1104 (2014). https://doi.org/10.1007/s12013-014-0028-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0028-z

Keywords

Navigation