Skip to main content

Advertisement

Log in

Computational Identification of Significant Missense Mutations in AKT1 Gene

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The AKT1 gene is of supreme importance in cell signaling and human cancer. In the present study, we aim to understand the phenotype variations that were believed to have the highest impact in AKT1 gene by different computational approaches. The analysis was initiated with SIFT tool followed by PolyPhen 2.0, I-Mutant 2.0, and SNPs&GO tools with the aid of 22 nonsynonymous (nsSNPs) retrieved from dbSNP. A total of five AKT1 variants such as E17K, E17S, E319G, L357P, and P388T are found to exert deleterious effects on the protein structure and function. Furthermore, the molecular docking study indicates the lesser binding affinity of inhibitor with the mutant structure than the native type. In addition, root mean square deviation and hydrogen bond details were also analyzed in the 10 ns molecular dynamics simulation study. These computational evidences suggested that E17K, E17S, E319G, L357P, and P388T variants of AKT1 could destabilize the protein networks, thus causing functional deviations of protein to some extent. Moreover, the findings strongly indicate that screening for AKT1, E17K, E17S, E319G, L357P, and P388T variants may be useful for disease molecular diagnosis and also to design the potential AKT inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Staal, S. P. (1987). Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: Amplification of AKT1 in a primary human gastric adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 84, 5034–5037.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Vanhaesebroeck, B., & Alessi, D. R. (2000). The PI3K-PDK1 connection: More than just a road to PKB. The Biochemical Journal, 346, 561–576.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Muise-Helmericks, R. C., Grimes, H. L., Bellacosa, A., Malstrom, S. E., Tsichlis, P. N., & Rosen, N. (1998). Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. The Journal of biological chemistry, 273, 29864–29872.

    Article  PubMed  CAS  Google Scholar 

  4. Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., & Zeiher, A. M. (1999). Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature, 399, 601–605.

    Article  PubMed  CAS  Google Scholar 

  5. Khwaja, A. (1999). Akt is more than just a Bad kinase. Nature, 401, 33–34.

    Article  PubMed  CAS  Google Scholar 

  6. Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M., & Donner, D. B. (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature, 401, 82–85.

    Article  PubMed  CAS  Google Scholar 

  7. Mende, I., Malstrom, S., Tsichlis, P. N., Vogt, P. K., & Aoki, M. (2001). Oncogenic transformation induced by membrane-targeted Akt2 and Akt3. Oncogene, 20, 4419–4423.

    Article  PubMed  CAS  Google Scholar 

  8. Wei, L., Yang, Y., & Yu, Q. (2001). Tyrosine kinase-dependent, phosphatidylinositol 30-kinase, and mitogen-activated protein kinase-independent signaling pathways prevent lung adenocarcinoma cells from anoikis. Cancer Research, 61, 2439–2444.

    PubMed  CAS  Google Scholar 

  9. Testa, J. R., & Bellacosa, A. (2001). AKT plays a central role in tumorigenesis. Proceedings of the National Academic Sciences of the United States of America, 98, 10983–10985.

    Article  CAS  Google Scholar 

  10. Altomare, D. A., & Testa, J. R. (2005). Perturbations of the AKT signaling pathway in human cancer. Oncogene, 24, 7455–7764.

    Article  PubMed  CAS  Google Scholar 

  11. Sun, M., Wang, G., Paciga, J. E., Feldman, R. I., Yuan, Z. Q., Ma, X. L., et al. (2001). AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. The American Journal of Pathology, 159, 431–437.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. West, K. A., Castillo, S. S., & Dennis, P. A. (2002). Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resistance Updates, 5, 234–248.

    Article  PubMed  CAS  Google Scholar 

  13. Carpten, J. D., Faber, A. L., Horn, C., Donoho, G. P., Briggs, S. L., Robbins, C. M., et al. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature, 448, 439–444.

    Article  PubMed  CAS  Google Scholar 

  14. Malanga, D., Scrima, M., De Marco, C., Fabiani, F., De Rosa, N., De Gisi, S., et al. (2008). Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle, 7, 665–669.

    Article  PubMed  CAS  Google Scholar 

  15. Lindsley, C. W. (2010). The Akt/PKB family of protein kinases: A review of small molecule inhibitors and progress towards target validation: A 2009 update. Current Topics in Medicinal Chemistry, 10, 458–477.

    Article  PubMed  CAS  Google Scholar 

  16. Rajasekaran, R., Sudandiradoss, C., Doss, C. G., & Sethumadhavan, R. (2007). Identification and in silico analysis of functional SNPs of the BRCA1 gene. Genomics, 90, 447–452.

    Article  PubMed  CAS  Google Scholar 

  17. Rajasekaran, R., Priya Doss, C. G., Sudandiradoss, C., Ramanathan, K., & Sethumadhavan, R. (2008). In silico analysis of structural and functional consequences in p16INK4A by deleterious nsSNPs associated CDKN2A gene in malignant melanoma. Biochimie, 90, 1523–1529.

    Article  PubMed  CAS  Google Scholar 

  18. Madumathi, M., & Shanthi, V. (2012). Prediction of deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) of GALC gene by computational method. International Journal of Pharmacy and Pharmaceutical Sciences, 3, 384387.

    Google Scholar 

  19. Rajasekaran, R., & Sethumadhavan, R. (2010). Exploring the cause of drug resistance by the detrimental missense mutations in KIT receptor: Computational approach. Amino Acids, 39, 651–660.

    Article  PubMed  CAS  Google Scholar 

  20. Sreevishnupriya, K., Chandrasekaran, P., Senthilkumar, A., Sethumadhavan, R., Shanthi, V., Daisy, P., et al. (2012). Computational analysis of deleterious missense mutations in aspartoacylase that cause Canavan’s disease. Science China Life sciences, 55, 1109–1119.

    Article  PubMed  CAS  Google Scholar 

  21. Feldman, J., Snyder, K. A., Ticoll, A., Pintilie, G., & Hogue, C. W. (2006). A complete small molecule dataset from the protein data bank. FEBS Letters, 580, 1649–1653.

    Article  PubMed  CAS  Google Scholar 

  22. Cavallo, A., & Martin, A. C. (2005). Mapping SNPs to protein sequence and structure data. Bioinformatics, 8, 1443–1450.

    Article  Google Scholar 

  23. Hess, B., Kutzner, C., Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.

    Article  CAS  Google Scholar 

  24. Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718.

    Article  Google Scholar 

  25. Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31, 3812–3814.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., et al. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7, 248–249.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Capriotti, E., Fariselli, P., & Casadio, R. (2005). I Mutant 2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 2005(33), 306–310.

    Article  Google Scholar 

  28. Calabrese, R., Capriotti, E., Fariselli, P., Martelli, P. L., & Casadio, R. (2009). Functional annotations improve the predictive score of human disease-related mutations in proteins. Human Mutation, 30, 1237–1244.

    Article  PubMed  CAS  Google Scholar 

  29. Bava, K. A., Gromiha, M. M., Uedaira, H., et al. (2004). ProTherm, version 4.0: Thermodynamic database for proteins and mutants. Nucleic Acids Research, 32, 120–121.

    Article  Google Scholar 

  30. Lopez, G., Valencia, A., & Tress, M. L. (2007). Firestar–prediction of functionally important residue using structural templates and alignment reliability. Nucleic Acids Research, 35, 573–577.

    Article  Google Scholar 

  31. Thompson, M. A. (2004). ArgusLab 4.0.1. Planaria Software, LLC, Seatle, WA. http://www.arguslab.com. Accessed 1 Nov 2010.

  32. Oda, A., Okayasu, M., Kamiyama, Y., Yoshida, T., Takahashi, O., & Matsuzaki, H. (2007). Evaluation of docking accuracy and investigation of roles of parameters and each term in scoring functions for protein-ligand docking using ArgusLab software. Bulletin Chemical Society of Japan, 80, 1920–1925.

    Article  CAS  Google Scholar 

  33. Meagher, K. L., & Carlson, H. A. (2005). Solvation influences flap collapse in HIV-1 protease. Proteins, 58, 119–125.

    Article  PubMed  CAS  Google Scholar 

  34. Darden, T., Perera, L., Li, L., & Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 7, 55–60.

    Article  Google Scholar 

  35. Lindahl, E., Hess, B., & Van der Spoel, D. (2001). GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7, 306–317.

    CAS  Google Scholar 

  36. Wang, Z., & Moult, J. (2001). SNPs, protein structure and disease. Human Mutation, 17, 263–270.

    Article  PubMed  Google Scholar 

  37. Suhre, K., & Sanejouand, Y. H. (2004). ElNemo: A normal mode web-server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Research, 32, 610–614.

    Article  Google Scholar 

  38. Zacharias, M. (2004). Rapid protein–ligand docking using soft modes from molecular dynamic simulations to account for protein deformability: binding of FK506 to FKBP. Proteins, 54, 759–767.

    Article  PubMed  CAS  Google Scholar 

  39. Brunne, R. M., Berndt, K. D., Guntert, P., Wuthrich, K., & van Gunsteren, W. F. (1995). Structure and internal dynamics of the bovine pancreatic trypsin inhibitor in aqueous solution from long-time molecular dynamics simulations. Proteins, 23, 49–62.

    Article  PubMed  CAS  Google Scholar 

  40. Eyrisch, S., & Helms, V. (2007). Transient pocket on protein surface involved in protein–protein interaction. Journal of Medicinal Chemistry, 50, 3457–3464.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express deep sense of gratitude to the management of Vellore Institute of Technology for all the support, assistance, and constant encouragements to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Shanthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanthi, V., Rajasekaran, R. & Ramanathan, K. Computational Identification of Significant Missense Mutations in AKT1 Gene. Cell Biochem Biophys 70, 957–965 (2014). https://doi.org/10.1007/s12013-014-0003-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0003-8

Keywords

Navigation