Skip to main content
Log in

Influence of Electromagnetic Signal of Antibiotics Excited by Low-Frequency Pulsed Electromagnetic Fields on Growth of Escherichia coli

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Energy medicine (EM) provides a new medical choice for patients, and its advantages are the noninvasive detection and nondrug treatment. An electromagnetic signal, a kind of EM, induced from antibiotic coupling with weak, extremely low-frequency pulsed electromagnetic fields (PEMFs) is utilized for investigating the growth speed of Escherichia coli (E. coli). PEMFs are produced by solenoidal coils for coupling the electromagnetic signal of antibiotics (penicillin). The growth retardation rate (GRR) of E. coli is used to investigate the efficacy of the electromagnetic signal of antibiotics. The E. coli is cultivated in the exposure of PEMFs coupling with the electromagnetic signal of antibiotics. The maximum GRR of PEMFs with and without the electromagnetic signal of antibiotics on the growth of E. coli cells in the logarithmic is 17.4 and 9.08 %, respectively. The electromagnetic signal of antibiotics is successfully coupled by the electromagnetic signal coupling instrument to affect the growth of E. coli. In addition, the retardation effect on E. coli growth can be improved of by changing the carrier frequency of PEMFs coupling with the electromagnetic signal of antibiotics. GRR caused by the electromagnetic signal of antibiotics can be fixed by a different carrier frequency in a different phase of E. coli growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ernst, E., & Cassileth, B. R. (1998). The prevalence of complementary/alternative medicine in cancer: A systematic review. Cancer, 83, 777–782.

    Article  PubMed  CAS  Google Scholar 

  2. White House Commission on complementary and alternative medicine policy. www.whccamp.hhs.gov March 2002. Accessed 20 July 2006.

  3. Ernest, E. (1996). Complementary medicine: An objective appraisal. Oxford: Butterworth-Heinemann.

    Google Scholar 

  4. Hill, F. J. (2003). Complementary and alternative medicine: the next generation of health promotion, Health Promotion International, vol. 18(3). Oxford University Press; pp. 265–72.

  5. National Center for Complementary and Alternative Medicine (NCCAM) of National Institutes of Health (NIH) in the United States What is Complementary and Alternative Medicine? http://nccam.nih.gov/health/whatiscam/. Accessed May 2013.

  6. National Center for Complementary and Alternative Medicine (NCCAM). Expanding horizons of healthcare: Five-year strategic plan, 2001–2005. www.nccam.nih.gov/about/plans/fiveyear/index.htm. Accessed May 2013.

  7. Ding, D., & Dong, X. J. (2010). Research on QiYuan theory for law of cause of disease and pathogens is of cardialgia caused by obstruction of Qi in the chest. Journal of Changchun University of Traditional Chinese Medicine, 26(2), 169–170.

    Google Scholar 

  8. Oschman, J. L. (2000). Energy medicine: The scientific basis. Edinburgh: Churchill Livingstone.

  9. Benveniste, J., Jurgens, P., & Aissa, J. (1996). Digital recording/transmission of the cholinergic signal. FASEB Journal, 10, A1479.

    Google Scholar 

  10. Benveniste J, Guillonnet D (2003) Method, system and device for producing signals from a substance biological and/or chemical activity. US Patent, N 6 541, 978 B1.

  11. Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2011). Low intensity electromagnetic irradiation with 70.6 and 73 GHz frequencies affects Escherichia coli growth and changes water properties. Cell Biochemistry and Biophysics, 60, 275–281.

    Article  Google Scholar 

  12. Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2008). Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics. Cell Biochemistry and Biophysics, 51, 97–103.

    Article  PubMed  CAS  Google Scholar 

  13. Xu, Z., Xiaoli, L., Leiting, P., & Imshik, L. (2010). Magnetic fields at extremely low-frequency (50 Hz, 0.8 mT) can induce the uptake of intracellular calcium levels in osteoblasts. Biochemical and Biophysical Research Communications, 396, 662–666.

    Article  Google Scholar 

  14. Luo, M. Y., Song, K., Zhang, X., & Lee, I. (2009). Mechanism for alternating electric fields induced-effects on cytosolic calcium. Chinese Physics Letters, 26, 1–4.

    Google Scholar 

  15. Montagnier, L., Aissa, J., Ferris, S., Montagnier, J. L., & Lavallee, C. (2009). Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences. Interdisciplinary Sciences Computational Life Sciences, 1, 81–90. doi:10.1007/s12539-009-0036-7.

    Article  CAS  Google Scholar 

  16. Simko′, M., & Mattsson, M. O. (2004). Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: Possible immune cell activation. Journal of Cellular Biochemistry, 93, 83–92.

    Article  Google Scholar 

  17. Gaafar, E.-S. A., Hanafy, M. S., Tohamy, E. Y., & Ibrahim, M. H. (2008). The effect of electromagnetic field on protein molecular structure of E. coli and its pathogenesis. Romanian Journal of Biophysics, 18(2), 145–169.

    CAS  Google Scholar 

  18. Roychoudhury, S., Jedlicka, J., Parkanyi, V., Rafay, J., Ondruska, L., Massanyi, P., et al. (2009). Influence of a 50 Hz extra low frequency electromagnetic field on spermatozoa motility and fertilization rates in rabbits. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances and Environmental Engineering, 44, 1041–1047.

    Article  CAS  Google Scholar 

  19. Fojt, L., Strašák, L., Vetterl, V., & Šmarda, J. (2004). Comparison of the low frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry-Proceedings of the XVIIth International Symposium on Bioelectrochemistry and Bioenergetics, 63(1–2), 337–341.

    CAS  Google Scholar 

  20. Fojt, L., Strašák, L., Vetterl, V., & Šmarda, J. (2005). Effects of 50 Hz magnetic fields on the viability of different bacterial strains. Electromagnetic Biology and Medicine, 24, 293–300.

    Article  Google Scholar 

  21. Fojt, L., Strašák, L., Vetterl, V., & Šmarda, J. (2007). Effect of electromagnetic fields on the denitrification activity of Paracoccus denitrificans. Bioelectrochemistry, 70, 91–95.

    Article  PubMed  CAS  Google Scholar 

  22. Fojt, L., Strašák, L., Vetterl, V., & Šmarda, J. (2009). 50 Hz magnetic field effect on the morphology of bacteria. Micron, 40, 918–922.

    Article  PubMed  Google Scholar 

  23. Frahma, J., Mattssona, M. O., & Simkóa, M. (2010). Exposure to ELF magnetic fields modulate redox related protein expression in mouse macrophages. Toxicology Letters, 192(3), 330–336.

    Article  Google Scholar 

  24. Belyaev, I. Y., & Alipov, E. D. (2001). Frequency-dependent effects of ELF magnetic field on chromatin conformation in Escherichia coli cells and human lymphocytes. Biochimica et Biophysica Acta, 1526, 269–276.

    Article  PubMed  CAS  Google Scholar 

  25. Kroupová, J., Bártová, E., Fojt, L., Strašák, L., Kozubek, S., & Vetterl, V. (2007). Low-frequency magnetic field effect on cytoskeleton and chromatin. Bioelectrochemistry, 70(1), 96–100.

    Article  PubMed  Google Scholar 

  26. Liboff, A. R. (2012). Electromagnetic vaccination. Medical Hypotheses, 79, 331–333.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Sheng Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, YL., Chang, FY., Chen, MK. et al. Influence of Electromagnetic Signal of Antibiotics Excited by Low-Frequency Pulsed Electromagnetic Fields on Growth of Escherichia coli . Cell Biochem Biophys 67, 1229–1237 (2013). https://doi.org/10.1007/s12013-013-9641-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9641-5

Keywords

Navigation