Skip to main content

Advertisement

Log in

Construction and Characterization of a CTLA-4-Targeted scFv–Melittin Fusion Protein as a Potential Immunosuppressive Agent for Organ Transplant

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Immunotoxins with selective cytotoxicity are frequently used as therapeutic immunosuppressive agents in solid-organ transplantation because of their efficiency and high specificity. In this study, we present a new recombinant immunotoxin termed anti-CTLA-4-scFv–melittin prepared from Escherichia coli aimed at clearing activated T cells at the same time avoiding all-round decline in systematic immunity. This fusion protein is composed of anti-CTLA-4-scFv unit and melittin analog unit with properties of low immunogenicity and selective cytotoxicity to CTLA-4-positive T cells. In preliminary biological activity assays, our results confirmed the feasibility of activated T cell clearance strategy and there were significant differences in cell survival rates between CTLA-4-positive group and control group at all experimental concentrations of the immunotoxin. The selective cytotoxicity, low immunogenicity, and low production cost make it an attractive alternate to traditional immunosuppressants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stemer, G., & Lemmens-Gruber, R. (2010). Clinical pharmacy services and solid organ transplantation: a literature review. Pharmacy World & Science, 32, 7–18.

    Article  CAS  Google Scholar 

  2. Sigal, L. H. (2012). Basic science for the clinician 55: CTLA-4. Journal of Clinical Rheumatology, 18, 155–158.

    Article  PubMed  Google Scholar 

  3. Jain, N., Nguyen, H., Chambers, C., & Kang, J. (2010). Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proceedings of the National Academy of Sciences, 107, 1524–1528.

    Article  CAS  Google Scholar 

  4. Salama, April K. S., & Stephen Hodi, F. (2011). Cytotoxic T-Lymphocyte -Associated Antigen-4. Clinical Cancer Research, 17, 4622–4628.

    Article  PubMed  CAS  Google Scholar 

  5. Egen, J. G., Kuhns, M. S., & Allison, J. P. (2002). CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature Immunology, 3, 611–618.

    Article  PubMed  CAS  Google Scholar 

  6. Schneider, H., Downey, J., Smith, A., Zinselmeyer, B. H., Rush, C., Brewer, J. M., et al. (2006). Reversal of the TCR stop signal by CTLA-4. Science, 313, 1972–1975.

    Article  PubMed  CAS  Google Scholar 

  7. Guo, J., Si, L., Kong, Y., Flaherty, K. T., Xu, X., Zhu, Y., et al. (2011). Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. Journal of Clinical Oncology, 29, 2904–2909.

    Article  PubMed  CAS  Google Scholar 

  8. Boni, A., Cogdill, A. P., Dang, P., Udayakumar, D., Njauw, C. N., Sloss, C. M., et al. (2010). Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Research, 70, 5213–5219.

    Article  PubMed  CAS  Google Scholar 

  9. Habermann, E. (1972). Bee and wasp venoms the biochemistry and pharmacology of their peptides and enzymes are reviewed. Science, 177, 314–322.

    Article  PubMed  CAS  Google Scholar 

  10. Raghuraman, H., & Chattopadhyay, A. (2007). Melittin: a membrane-active peptide with diverse functions. Bioscience Reports, 27, 189–223.

    Article  PubMed  CAS  Google Scholar 

  11. Dempsey, C. E. (1990). The actions of melittin on membranes. Biochimica et Biophysica Acta, 1031, 143–161.

    Article  PubMed  CAS  Google Scholar 

  12. Son, D. J., Lee, J. W., Lee, Y. H., Song, H. S., Lee, C. K., & Hong, J. T. (2007). Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacology & Therapeutics, 115, 246–270.

    Article  CAS  Google Scholar 

  13. Readett, DRJ., Jungnelius, JUB., Gomeznovarro, J., Hanson, D., Krieg, AM. (2007). Anti-CTLA-4 antibody and CpG-Motif-contanting synthetic oligodeoxynucleotide combination therapy for cancer treatment. WO 2007/008463 A2 [P], 1–18.

  14. Zhao, Y. H., Bai, B. Y., Liu, A. S., Gao, X. Y., & Lin, J. R. (2008). Gene expression and structure-activity relationship of melittin analogues. Journal of South China University of Technology (Natural Science)., 12, 116–120.

    Google Scholar 

  15. Nelson, M. D., & Fitch, D. H. (2011). Overlap extension PCR: an efficient method for transgene construction. Methods in Molecular Biology, 772, 459–470.

    Article  PubMed  CAS  Google Scholar 

  16. Pistillo, M. P., Tazzari, P. L., Palmisano, G. L., Pierri, I., Bolognesi, A., Ferlito, F., et al. (2003). CTLA-4 is not restricted to the lymphoid cell lineage and can function as a target molecule for apoptosis induction of leukemic cells. Blood, 101, 202–209.

    Article  PubMed  CAS  Google Scholar 

  17. Coelho, T., Tredger, M., & Dhawan, A. (2012). Current status of immunosuppressive agents for solid organ transplantation in children. Pediatric Transplantation, 16, 106–122.

    Article  PubMed  CAS  Google Scholar 

  18. Rudd, C. E., Taylor, A., & Schneider, H. (2009). CD28 and CTLA-4 coreceptor expression and signal transduction. Immunology Reviews, 229, 12–26.

    Article  CAS  Google Scholar 

  19. Bolognesi, A., Polito, L., Tazzari, P., Lemoli, R. M., Lubelli, C., Fogli, M., et al. (2000). In vitro anti-tumor activity of anti-CD80 and anti-CD86 immunotoxins containing type 1 ribosome-inactivating proteins. British Journal of Haematology, 110, 351–361.

    Article  PubMed  CAS  Google Scholar 

  20. Weetall, M., Digan, M. E., Hugo, R., Mathew, S., Hopf, C., Tart-Risher, N., et al. (2002). T-cell depletion and graft survival induced by anti-human CD3 immunotoxins in human CD3 epsilon transgenic mice. Transplantation, 73, 1658–1666.

    Article  PubMed  CAS  Google Scholar 

  21. Asiedu, C. K., Goodwin, K. J., Balgansuren, G., Jenkins, S. M., Le Bas-Bernardet, S., Jargal, U., et al. (2005). Elevated T regulatory cells in long-term stable transplant tolerance in rhesus macaques induced by anti-CD3 immunotoxin and deoxyspergualin. Journal of Immunology, 175, 8060–8068.

    CAS  Google Scholar 

  22. Tazzari, P. L., Polito, L., Bolognesi, A., Pistillo, M. P., Capanni, P., Palmisano, G. L., et al. (2001). Immunotoxins containing recombinant anti-CTLA-4 single-chain fragment variable antibodies and saporin: in vitro results and in vivo effects in an acute rejection model. Journal of Immunology, 167, 4222–4229.

    CAS  Google Scholar 

  23. Pistillo, M. P., Tazzari, P. L., Ellis, J. H., & Ferrara, G. B. (2000). Molecular characterization and applications of recombinant scFv antibodies to CD 152 co-stimulatory molecule. Tissue Antigens, 55, 229–238.

    Article  PubMed  CAS  Google Scholar 

  24. Zeng, L., Wan, L., Chen, L., Li, S., Lu, Y., Huang, Q., et al. (2006). Selective depletion of activated T Cells by recombinant immunotoxin containing anti-CTLA-4 single-chain fragment of variable antibody and N-terminal fragment of perforin. Transplantation Proceedings, 38, 2151–2153.

    Article  PubMed  CAS  Google Scholar 

  25. Hagemeyer, C. E., von Zur, M. C., Von Elverfeldt, D., & Peter, K. (2009). Single-chain antibodies as diagnostic tools and therapeutic agents. Thrombosis and Haemostasis, 101, 1012–1019.

    PubMed  CAS  Google Scholar 

  26. Oršolić, N. (2012). Bee venom in cancer therapy. Cancer Metastasis Reviews, 31, 173–194.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyi Shi.

Additional information

Hailong Jin, Congran Li and Ding Li contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, H., Li, C., Li, D. et al. Construction and Characterization of a CTLA-4-Targeted scFv–Melittin Fusion Protein as a Potential Immunosuppressive Agent for Organ Transplant. Cell Biochem Biophys 67, 1067–1074 (2013). https://doi.org/10.1007/s12013-013-9605-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9605-9

Keywords

Navigation