Skip to main content

Advertisement

Log in

Phagocytized Beads Reduce the α5β1 Integrin Facilitated Invasiveness of Cancer Cells by Regulating Cellular Stiffness

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Cell invasion through the extracellular matrix (ECM) of connective tissue is an important biomechanical process, which plays a prominent role in tumor progression. The malignancy of tumors depends mainly on the capacity of cancer cells to migrate and metastasize. A prerequisite for metastasis is the invasion of cancer cells through connective tissue to targeted organs. Cellular stiffness and cytoskeletal remodeling dynamics have been proposed to affect the invasiveness of cancer cells. Here, this study investigated whether highly invasive cancer cells are capable of invading into dense 3D-ECMs with an average pore-size of 1.3 or 3.0 μm when phagocytized beads (2.7 and 4.5 μm diameter) increased their cellular stiffness and reduced their cytoskeletal remodeling dynamics compared to weakly invasive cancer cells. The phagocytized beads decreased the invasiveness of the α5β1high cancer cells into 3D-ECMs, whereas the invasiveness of the α5β1low cancer cells was not affected. The effect of phagocytized beads on the highly invasive α5β1high cells was abolished by specific knock-down of the α5 integrin subunit or addition of an anti-α5 integrin blocking antibody. Furthermore, the reduction of contractile forces using MLCK and ROCK inhibitors abolished the effect of phagocytized beads on the invasiveness of α5β1high cells. In addition, the cellular stiffness of α5β1high cells was increased after bead phagocytosis, whereas the bead phagocytosis did not alter the stiffness of α5β1low cells. Taken together, the α5β1 integrin dependent invasiveness was reduced after bead phagocytosis by altered biomechanical properties, suggesting that the α5β1high cells need an appropriate intermediate cellular stiffness to overcome the steric hindrance of 3D-ECMs, whereas the α5β1low cells were not affected by phagocytized beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ECM:

Extra cellular matrix

FN:

Fibronectin

MLCK:

Myosin light chain kinase

COL:

Collagen

References

  1. Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2, 84–89.

    Article  PubMed  CAS  Google Scholar 

  2. Behrens, J., Mareel, M. M., Van Roy, F. M., & Birchmeier, W. (1989). Dissecting tumor cell invasion: Epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell–cell adhesion. Journal of Cell Biology, 108, 2435–2447.

    Article  PubMed  CAS  Google Scholar 

  3. Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2, 76–83.

    Article  PubMed  CAS  Google Scholar 

  4. Danen, E. H., van Rheenen, J., Franken, W., Huveneers, S., Sonneveld, P., Jalink, K., et al. (2005). Integrins control motile strategy through a Rho-cofilin pathway. Journal of Cell Biology, 169, 515–526.

    Article  PubMed  CAS  Google Scholar 

  5. De Craene, B., Gilbert, B., Stove, C., Bruyneel, E., van Roy, F., & Berx, G. (2005). The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Research, 65, 6237–6244.

    Article  PubMed  Google Scholar 

  6. Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., & Warda, A. (1991). E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells. Journal of Cell Biology, 113, 173–185.

    Article  PubMed  CAS  Google Scholar 

  7. Vleminckx, K., Vakaet, L, Jr, Mareel, M., Fiers, W., & van Roy, F. (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell, 66, 107–119.

    Article  PubMed  CAS  Google Scholar 

  8. Al-Mehdi, A. B., Tozawa, K., Fisher, A. B., Shientag, L., Lee, A., & Muschel, R. J. (2000). Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: A new model for metastasis. Nature Medicine, 6, 100–102.

    Article  PubMed  CAS  Google Scholar 

  9. Steeg, P. S. (2006). Tumor metastasis: Mechanistic insights and clinical challenges. Nature Medicine, 12, 895–904.

    Article  PubMed  CAS  Google Scholar 

  10. Buckley, C. D., Doyonnas, R., Newton, J. P., Blystone, S. D., Brown, E. J., Watt, S. M., et al. (1996). Identification of alpha v beta 3 as a heterotypic ligand for CD31/PECAM-1. Journal of Cell Science, 109, 437–445.

    PubMed  CAS  Google Scholar 

  11. Leroy-Dudal, J., Demeilliers, C., Gallet, O., Pauthe, E., Dutoit, S., Agniel, R., et al. (2005). Transmigration of human ovarian adenocarcinoma cells through endothelial extracellular matrix involves alphav integrins and the participation of MMP2. International Journal of Cancer, 114, 531–543.

    Article  CAS  Google Scholar 

  12. Voura, E. B., Ramjeesingh, R. A., Montgomery, A. M., & Siu, C. H. (2001). Involvement of integrin alpha(v)beta(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Molecular Biology of the Cell, 12, 2699–2710.

    Article  PubMed  CAS  Google Scholar 

  13. Playford, M. P., & Schaller, M. D. (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene, 23, 7928–7946.

    Article  PubMed  CAS  Google Scholar 

  14. Burridge, K., & Wennerberg, K. (2004). Rho and Rac take center stage. Cell, 116, 167–179.

    Article  PubMed  CAS  Google Scholar 

  15. Bauer, K., Mierke, C., & Behrens, J. (2007). Expression profiling reveals genes associated with transendothelial migration of tumor cells: A functional role for alpha v beta3 integrin. International Journal of Cancer, 121, 1910–1918.

    Article  CAS  Google Scholar 

  16. Mierke, C. T., Frey, B., Fellner, M., Herrmann, M., & Fabry, B. (2011). Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces. Journal of Cell Science, 124, 369–383.

    Article  PubMed  CAS  Google Scholar 

  17. Guck, J., Schinkinger, S., Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., et al. (2005). Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophysical Journal, 88, 3689–3698.

    Article  PubMed  CAS  Google Scholar 

  18. Suresh, S. (2007). Biomechanics and biophysics of cancer cells. Acta Biomaterialia, 3, 413–438.

    Article  PubMed  Google Scholar 

  19. Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110, 673–687.

    Article  PubMed  CAS  Google Scholar 

  20. Arnaout, M. A., Goodman, S. L., & Xiong, J. P. (2007). Structure and mechanics of integrin-based cell adhesion. Current Opinion in Cell Biology, 19, 495–507.

    Article  PubMed  CAS  Google Scholar 

  21. Damsky, C. H., Knudsen, K. A., Bradley, D., Buck, C. A., & Horwitz, A. F. (1985). Distribution of the cell substratum attachment (CSAT) antigen on myogenic and fibroblastic cells in culture. Journal of Cell Biology, 100, 1528–1539.

    Article  PubMed  CAS  Google Scholar 

  22. Moser, M., Legate, K. R., Zent, R., & Fässler, R. (2009). The tail of integrins, talin, and kindlins. Science, 324, 895–899.

    Article  PubMed  CAS  Google Scholar 

  23. Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nature Reviews Molecular Cell Biology, 2, 793–805.

    Article  PubMed  CAS  Google Scholar 

  24. Geiger, B., Yamada, KM. (2011). Molecular architecture and function of matrix adhesions. Cold Spring Harbor Perspectives in Biology , 3 (5). doi: 10.1101/cshperspect.a005033.

  25. Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., et al. (2001). Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biology, 3, 466–472.

    Article  PubMed  CAS  Google Scholar 

  26. Loftus, J. C., & Liddington, R. C. (1997). Cell adhesion in vascular biology. New insights into integrin-ligand interaction. The Journal of Clinical Investigation, 99, 2302–2306.

    Article  PubMed  CAS  Google Scholar 

  27. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A., & Horwitz, A. F. (1997). Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature, 385, 537–540.

    Article  PubMed  CAS  Google Scholar 

  28. Zaman, M. H., Trapani, L. M., Siemeski, A., Mackellar, D., Gong, H., Kamm, R. D., et al. (2006). Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 103, 10889–10894.

    Article  PubMed  CAS  Google Scholar 

  29. Elson, E. L. (1988). Cellular mechanics as an indicator of cytoskeletal structure and function. Annual Review of Biophysics and Biophysical Chemistry, 17, 397–430.

    Article  PubMed  CAS  Google Scholar 

  30. Giannone, G., & Sheetz, M. P. (2006). Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends in Cell Biology, 16, 213–223.

    Article  PubMed  CAS  Google Scholar 

  31. Friedland, J. C., Lee, M. H., & Boettiger, D. (2009). Mechanically activated integrin switch controls alpha5beta1 function. Science, 323, 642–644.

    Article  PubMed  CAS  Google Scholar 

  32. Gallant, N. D., Michael, K. E., & Garcia, A. J. (2005). Cell adhesion strengthening: Contributions of adhesive area, integrin binding, and focal adhesion assembly. Molecular Biology of the Cell, 16, 4329–4340.

    Article  PubMed  CAS  Google Scholar 

  33. Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8, 241–254.

    Article  PubMed  CAS  Google Scholar 

  34. Mierke, C. T., Kollmannsberger, P., Paranhos-Zitterbart, D., Smith, J., Fabry, B., & Goldmann, W. H. (2008). Mechano-coupling and regulation of contractility by the vinculin tail domain. Biophysical Journal, 94, 661–670.

    Article  PubMed  CAS  Google Scholar 

  35. Mierke, C. T., Kollmannsberger, P., Zitterbart, D. P., Diez, G., Koch, T. M., Marg, S., et al. (2010). Vinculin facilitates cell invasion into three-dimensional collagen matrices. Journal of Biological Chemistry, 285, 13121–13130.

    Article  PubMed  CAS  Google Scholar 

  36. Caswell, P. T., Chan, M., Lindsay, A. J., McCaffrey, M. W., Boettiger, D., & Norman, J. C. (2008). Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. Journal of Cell Biology, 183, 143–155.

    Article  PubMed  CAS  Google Scholar 

  37. Caswell, P. T., Spence, H. J., Parsons, M., White, D. P., Clark, K., Cheng, K., et al. (2007). Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Developmental Cell, 13, 496–510.

    Article  PubMed  CAS  Google Scholar 

  38. Qian, F., Zhang, Z. C., Wu, X. F., Li, Y. P., & Xu, Q. (2005). Interaction between integrin alpha(5) and fibronectin is required for metastasis of B16F10 melanoma cells. Biochemical and Biophysical Research Communications, 333, 1269–1275.

    Article  PubMed  CAS  Google Scholar 

  39. Sawada, K., Mitra, A. K., Radjabi, A. R., Bhaskar, V., Kistner, E. O., Tretiakova, M., et al. (2008). Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Research, 68, 2329–2339.

    Article  PubMed  CAS  Google Scholar 

  40. Wu, H., Liang, Y. L., Li, Z., Jin, J., Zhang, W., Duan, L., et al. (2006). Positive expression of E-cadherin suppresses cell adhesion to fibronectin via reduction of alpha5beta1 integrin in human breast carcinoma cells. Journal of Cancer Research and Clinical Oncology, 132, 795–803.

    Article  PubMed  CAS  Google Scholar 

  41. Schirner, M., Herzberg, F., Schmidt, R., Streit, M., Schoning, M., Hummel, M., et al. (1998). Integrin alpha5beta1: A potent inhibitor of experimental lung metastasis. Clinical and Experimental Metastasis, 16, 427–435.

    PubMed  CAS  Google Scholar 

  42. Tani, N., Higashiyama, S., Kawaguchi, N., Madarame, J., Ota, I., Ito, Y., et al. (2003). Expression level of integrin alpha 5 on tumour cells affects the rate of metastasis to the kidney. British Journal of Cancer, 88, 327–333.

    Article  PubMed  CAS  Google Scholar 

  43. Taverna, D., Ullman-Cullere, M., Rayburn, H., Bronson, R. T., & Hynes, R. O. (1998). A test of the role of alpha5 integrin/fibronectin interactions in tumorigenesis. Cancer Research, 58, 848–853.

    PubMed  CAS  Google Scholar 

  44. Friedl, P., & Brocker, E. B. (2000). The biology of cell locomotion within three-dimensional extracellular matrix. Cellular and Molecular Life Sciences, 57, 41–64.

    Article  PubMed  CAS  Google Scholar 

  45. Mierke, C. T., Zitterbart, D. P., Kollmannsberger, P., Raupach, C., Schlotzer-Schrehardt, U., Goecke, T., et al. (2008). Breakdown of the endothelial barrier function in tumor cell transmigration. Biophysical Journal, 94, 2832–2846.

    Article  PubMed  CAS  Google Scholar 

  46. Webb, D. J., Donais, K., Whitmore, L. A., Thomas, S. M., Turner, C. E., Parsons, J. T., et al. (2004). FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biology, 6, 154–161.

    Article  PubMed  CAS  Google Scholar 

  47. Mierke, C. T., Bretz, N., & Altevogt, P. (2011). Contractile forces contribute to increased GPI-anchored receptor CD24 facilitated cancer cell invasion. The Journal of Biological Chemistry, 286, 34858–34871.

    Article  PubMed  CAS  Google Scholar 

  48. Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., et al. (2003). Compensation mechanism in tumor cell migration: Mesenchymal-amoeboid transition after blocking of pericellular proteolysis. Journal of Cell Biology, 160, 267–277.

    Article  PubMed  CAS  Google Scholar 

  49. Wang, N., Butler, J. P., & Ingber, D. E. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science, 260, 1124–1127.

    Article  PubMed  CAS  Google Scholar 

  50. Fabry, B., Maksym, G. N., Shore, S. A., Moore, P. E., Panettieri, R. A, Jr, Butler, J. P., et al. (2001). Time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. Journal of Applied Physiology, 91, 986–994.

    PubMed  CAS  Google Scholar 

  51. Chen, J., Fabry, B., Schiffrin, E. L., & Wang, N. (2001). Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. American Journal of Physiology-Cell Physiology, 280, C1475–C1484.

    PubMed  CAS  Google Scholar 

  52. Mickel, W., Muenster, S., Jawerth, L. M., Vader, D. A., Weitz, D. A., Sheppard, A. P., et al. (2008). Robust pore size analysis of filamentous networks from 3d confocal microscopy. Biophysical Journal, 95, 6072–6080.

    Article  PubMed  CAS  Google Scholar 

  53. Fritsch, A., Höckel, M., Kiessling, T., Nnetu, K. D., Wetzel, F., Zink, M., et al. (2010). Are biomechanical changes necessary for tumour progression? Nature Physics, 6, 730–732.

    Article  CAS  Google Scholar 

  54. Brábek, J., Mierke, C. T., Rösel, D., Veselý, P., & Fabry, B. (2010). The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Communication and Signaling, 22, 1–8.

    Article  Google Scholar 

  55. Kumar, S., & Weaver, V. M. (2009). Mechanics, malignancy, and metastasis: The force journey of a tumor cell. Cancer and Metastasis Reviews, 28, 113–127.

    Article  PubMed  Google Scholar 

  56. Mierke, C. T. (2011). The biomechanical properties of 3d extracellular matrices and embedded cells regulate the invasiveness of cancer cells. Cell Biochemistry and Biophysics, 61, 217–236.

    Article  PubMed  CAS  Google Scholar 

  57. Wei, Y., Czekay, R. P., Robillard, L., Kugler, M. C., Zhang, F., Kim, K. K., et al. (2005). Regulation of alpha5beta1 integrin conformation and function by urokinase receptor binding. Journal of Cell Biology, 168, 501–511.

    Article  PubMed  CAS  Google Scholar 

  58. Huveneers, S., Truong, H., Fassler, R., Sonnenberg, A., & Danen, E. H. (2008). Binding of soluble fibronectin to integrin alpha5 beta1-link to focal adhesion redistribution and contractile shape. Journal of Cell Science, 121, 2452–2462.

    Article  PubMed  CAS  Google Scholar 

  59. Mierke, C. T. (2011). Cancer cells regulate biomechanical properties of human microvascular endothelial cells. Journal of Biological Chemistry, 286, 40025–40037.

    Article  PubMed  CAS  Google Scholar 

  60. Lu, H., Mabilat, C., Yeh, P., Guitton, J. D., Li, H., Pouchelet, M., et al. (1996). Blockage of urokinase receptor reduces in vitro the motility and the deformability of endothelial cells. FEBS Letters, 380, 21–24.

    Article  PubMed  CAS  Google Scholar 

  61. Arpaia, E., Blaser, H., Quintela-Fandino, M., Duncan, G., Leong, H. S., Ablack, A., et al. (2012). The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene, 31, 884–896.

    Article  PubMed  CAS  Google Scholar 

  62. Raupach, C., Zitterbart, D. P., Mierke, C. T., Metzner, C., Müller, F. A., & Fabry, B. (2007). Stress fluctuations and motion of cytoskeletal-bound markers. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 76(1 Pt 1), 011918.

    Article  Google Scholar 

  63. Dieterich, P., Klages, R., Preuss, R., & Schwab, A. (2008). Anomalous dynamics of cell migration. Proceedings of the National Academy of Sciences of the United States of America, 105, 459–463.

    Article  PubMed  CAS  Google Scholar 

  64. Oakes, P. W., Patel, D. C., Morin, N. A., Zitterbart, D. P., Fabry, B., Reichner, J. S., et al. (2009). Neutrophil morphology and migration are affected by substrate elasticity. Blood, 114, 1387–1395.

    Article  PubMed  CAS  Google Scholar 

  65. Potdar, A. A., Jeon, J., Weaver, A. M., Quaranta, V., & Cummings, P. T. (2010). Human mammary epithelial cells exhibit a bimodal correlated random walk pattern. PLoS ONE, 5, e9636.

    Article  PubMed  Google Scholar 

  66. Kollmannsberger, P., Mierke, C. T., & Fabry, B. (2011). Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension. Soft Matter, 7, 3127–3132.

    Article  CAS  Google Scholar 

  67. Mijailovich, S. M., Kojic, M., Zivkovic, M., Fabry, B., & Fredberg, J. J. (2002). A finite element model of cell deformation during magnetic bead twisting. Journal of Applied Physiology, 93, 1429–1436.

    PubMed  Google Scholar 

  68. Kasza, K. E., Nakamura, F., Hu, S., Kollmannsberger, P., Fabry, B., Stossel, T. P., et al. (2009). Filamin A is essential for active cell stiffening but not passive stiffening under external force. Biophysical Journal, 96, 4326–4335.

    Article  PubMed  CAS  Google Scholar 

  69. Fredberg, J. J., Jones, K. A., Nathan, M., Raboudi, S., Prakash, Y. S., Shore, S. A., et al. (1996). Friction in airway smooth muscle: Mechanism, latch, and implications in asthma. Journal of Applied Physiology, 81, 2703–2712.

    PubMed  CAS  Google Scholar 

  70. Möller, W., Stahlhofen, W., & Roth, C. (1990). Improved spinning top aerosol generator for the production of high concentrated ferromagnetic aerosols. Journal of Aerosol Science, 21, S435–S438.

    Article  Google Scholar 

  71. Eekhoff, A., Bonakdar, N., Alonso, J. L., Hoffmann, B., & Goldmann, W. H. (2011). Glomerular podocytes: A study of mechanical properties and mechano-chemical signaling. Biochemical and Biophysical Research Communications, 406, 229–233.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Dieter Freitag for excellent help with the magnetic twisting cytometry, Ben Fabry and Wolfgang H. Goldmann for helpful discussions, and Barbara Reischl, Christine Albert and Werner Schneider for excellent technical assistance. This work was supported by the Deutsche Krebshilfe (109432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia T. Mierke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mierke, C.T. Phagocytized Beads Reduce the α5β1 Integrin Facilitated Invasiveness of Cancer Cells by Regulating Cellular Stiffness. Cell Biochem Biophys 66, 599–622 (2013). https://doi.org/10.1007/s12013-012-9506-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9506-3

Keywords

Navigation