Skip to main content
Log in

Biochemical Characterization of Hemoglobins from Caspian Sea Sturgeons (Acipenser persicus and Acipenser stellatus)

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Hemoglobin (Hb) variability is a commonly used index of phylogenetic differentiation and molecular adaptation in fish enabling them to adapt to different ecological conditions. In this study, the characteristics of Hbs from two Sturgeon species of the Southern Caspian Sea Basin were investigated. After extraction and separation of hemoglobin from whole blood, the polyacrylamide gel electrophoresis (SDS-PAGE), cellulose acetate electrophoresis, and isoelectric focusing (IEF) were used to confirm Hb variabilities in these fishes. We showed that although both species have variable Hbs with different isoelectric points, their dominant Hbs can be identified. Ion exchange on CM-cellulose chromatography was used for purification of the dominant Hbs from these fishes. The accuracy of the methods was confirmed by IEF and SDS-PAGE. Spectral studies using fluorescence spectrophotometery indicated that although the Hbs from these fishes had similar properties they exhibited clear differences with human Hb. A comparative study of Hbs alpha-helix secondary substructures was performed by circular dichroism spectropolarimetry (CD) analysis. UV–vis spectrophotometery was also utilized to measure oxygen affinity of Hbs by sodium dithionite. Oxygen affinities of these Hbs were compared using Hb–oxygen dissociation curves. Together, these results demonstrate a significant relationship between oxygen affinity of fish hemoglobins and environmental partial pressure of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shimada, T., Okihama, Y., Okazaki, T., & Shukuya, R. (1980). The multiple hemoglobins of the Japanese eel, Anguilla japonica. Molecular basis for hemoglobin multiplicity and the subunit interactions. Journal of Biological Chemistry, 255, 7912–7917.

    PubMed  CAS  Google Scholar 

  2. Fago, A., D’Avino, R., & Prisco, G. (1992). The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic Ocean. European Journal of Biochemistry, 210, 963–970.

    Article  PubMed  CAS  Google Scholar 

  3. Fago, A., Romano, M., Tamburrini, M., Coletta, M., D’Avinno, R., & Prisco, G. (1993). A polymerising root effect fish hemoglobin with high subunit heterogeneity. European Journal of Biochemistry, 218, 829–835.

    Article  PubMed  CAS  Google Scholar 

  4. Riggs, A. (1970). Properties of fish hemoglobins. The Nervous System, Circulation, and Respiration, 4, 209–252.

    Article  CAS  Google Scholar 

  5. Powers, D. A. (1974). Structure, function and molecular ecology of fish hemoglobins. Annals of the New York Academy of Sciences, 241, 472–490.

    Article  PubMed  CAS  Google Scholar 

  6. di Prisco, G. (1998). Molecular adaptations of Antarctic fish hemoglobins. Fishes of Antarctica. A Biological Overview, pp. 339–353.

  7. Vitagliano, L., Bonomi, G., Riccio, A., Di Prisco, G., Smulevich, G., & Mazzarella, L. (2004). The oxidation process of Antarctic fish hemoglobins. European Journal of Biochemistry, 271, 1651–1659.

    Article  PubMed  CAS  Google Scholar 

  8. Clementi, M. E., De Rosa, M. C., Bertonati, C., Capo, C., Cataldi, E., Petruzzelli, R., et al. (2001). Functional and structural properties of the hemoglobin components from Italian sturgeon (Acipenser naccarii). Fish Physiology and Biochemistry, 24, 191–200.

    Article  CAS  Google Scholar 

  9. di Prisco, G., & Tamburrini, M. (1992). The hemoglobins of marine and freshwater fish: The search for correlations with physiological adaptation. Comparative Biochemistry and Physiology, 102, 661–671.

    Article  PubMed  CAS  Google Scholar 

  10. Tsuyuki, H., & Ronald, A. P. (1971). Molecular basis for multiplicity of Pacific salmon hemoglobins: Evidence for in vivo existence of molecular species with up to four different polypeptides. Comparative Biochemistry and Physiology Part B, 39, 503–510.

    Article  CAS  Google Scholar 

  11. Campo, S., Nastasi, G., D’Ascola, A., Campo, G. M., Avenoso, A., Traina, P., et al. (2008). Hemoglobin system of Sparus aurata: Changes in fishes farmed under extreme conditions. Science of the Total Environment, 403, 148–153.

    Article  PubMed  CAS  Google Scholar 

  12. Pelster, B., & Randall, D. (1998). The physiology of the root effect. Fish Physiology, 17, 113–139.

    Article  Google Scholar 

  13. Bahmani, M., Kazemi, R., & Donskaya, P. (2001). A comparative study of some hematological features in young reared sturgeons (Acipenser persicus and Huso huso). Fish Physiology and Biochemistry, 24, 135–140.

    Article  CAS  Google Scholar 

  14. Clementi, M. E., De Rosa, M. C., Bertonati, C., Capo, C., Cataldi, E., Petruzzelli, R., et al. (2001). The hemoglobins of the “Fossil fish” Acipenser naccarii: Functional properties and their structural basis. Hemoglobin, 25, 447–451.

    Article  PubMed  CAS  Google Scholar 

  15. di Prisco, G., Eastman, J. T., Giordano, D., Parisi, E., & Verde, C. (2007). Biogeography and adaptation of notothenioid fish: Hemoglobin function and globin-gene evolution. Gene, 398, 143–155.

    Article  PubMed  CAS  Google Scholar 

  16. Fago, A., Forest, E., & Weber, R. E. (2001). Hemoglobin and subunit multiplicity in the rainbow trout (Oncorhynchus mykiss) hemoglobin system. Fish Physiology and Biochemistry, 24, 335–342.

    Article  CAS  Google Scholar 

  17. Giordano, D., Boechi, L., Vergara, A., Marti, M. A., Samuni, U., Dantsker, D., et al. (2009). The hemoglobins of the sub-Antarctic fish Cottoperca gobio, a phyletically basal species—oxygen-binding equilibria, kinetics and molecular dynamics. FEBs Journal, 276, 2266–2277.

    Article  PubMed  CAS  Google Scholar 

  18. Giordano, D., Vergara, A., Lee, H. C., Peisach, J., Balestrieri, M., Mazzarella, L., et al. (2007). Hemoglobin structure/function and globin-gene evolution in the Arctic fish Liparis tunicatus. Gene, 406, 58–68.

    Article  PubMed  CAS  Google Scholar 

  19. Morris, R. J., Neckameyer, W. S., & Gibson, Q. H. (1981). Multiple T-state conformations in a fish hemoglobin–carbon monoxide binding to hemoglobin of Thunnus thynnus. Journal of Biological Chemistry, 256, 4598–4603.

    PubMed  CAS  Google Scholar 

  20. Verde, C., Howes, B. D., De Rosa, M. C., Raiola, L., Smulevich, G., Williams, R., et al. (2004). Structure and function of the Gondwanian hemoglobin of Pseudaphritis urvillii, a primitive notothenioid fish of temperate latitudes. Protein Science, 13, 2766–2781.

    Article  PubMed  CAS  Google Scholar 

  21. Verde, C., Lecointre, G., & di Prisco, G. (2007). The phylogeny of polar fishes and the structure, function and molecular evolution of hemoglobin. Polar Biology, 30, 523–539.

    Article  Google Scholar 

  22. Verde, C., Parisi, E., & di Prisco, G. (2003). The evolution of polar fish hemoglobin: A phylogenetic analysis of the ancestral amino acid residues linked to the root effect. Journal of Molecular Evolution, 57, S258–S267.

    Article  PubMed  CAS  Google Scholar 

  23. Verde, C., Parisi, E., & di Prisco, G. (2006). Tracking adaptive evolution in the structure, function and molecular phylogeny of haemoglobin in non-Antarctic notothenioid fish species. Deep-Sea Research Part II-Topical Studies in Oceanography, 53, 1105–1114.

    Article  CAS  Google Scholar 

  24. D’Avino, R., & di Prisco, G. (1989). Hemoglobin from the Antarctic fish Notothenia coriiceps neglecta. European Journal of Biochemistry, 179, 699–705.

    Article  PubMed  Google Scholar 

  25. Tamburrini, M., Verde, C., Olianas, A., Giardina, B., Corda, M., Sanna, M. T., et al. (2001). The hemoglobin system of the brown moray Gymnothorax unicolor. European Journal of Biochemistry, 268, 4104–4111.

    Article  PubMed  CAS  Google Scholar 

  26. Verde, C., Carratore, V., Riccio, A., Tamburrini, M., Parisi, E., & Di Prisco, G. (2002). The functionally distinct hemoglobins of the Arctic spotted wolffish Anarhichas minor. Journal of Biological Chemistry, 277, 36312–36320.

    Article  PubMed  CAS  Google Scholar 

  27. Marinakis, P., Tamburrini, M., Carratore, V., & di Prisco, G. (2003). Unique features of the hemoglobin system of the Antarctic notothenioid fish Gobionotothen gibberifrons. European Journal of Biochemistry, 270, 3981–3987.

    Article  PubMed  CAS  Google Scholar 

  28. Cabral, C. B., Imasato, H., Rosa, J. C., Laure, H. J., & da Silva, C. H. T. (2002). Fluorescence properties of tryptophan residues in the monomeric d-chain of Glossoscolex paulistus hemoglobin: An interpretation based on a comparative molecular model. Biophysical Chemistry, 97, 139–157.

    Article  Google Scholar 

  29. Kristinsson, H. G., & Hultin, H. O. (2004). Changes in trout hemoglobin conformations and solubility after exposure to acid and alkali pH. Journal of Agriculture and Food Chemistry, 52, 3633–3643.

    Article  CAS  Google Scholar 

  30. Kato, A., & Nakai, S. (1980). Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochimica et Biophysica Acta (BBA)-Protein Structure, 624, 13–20.

    Article  CAS  Google Scholar 

  31. Woody, R. W. (1995). Circular dichroism. Methods in Enzymology, 246, 34–71.

    Article  PubMed  CAS  Google Scholar 

  32. Gabbianelli, R., Zolese, G., Bertoli, E., & Falcioni, G. (2004). Correlation between functional and structural changes of reduced and oxidized trout hemoglobins I and IV at different pHs. European Journal of Biochemistry, 271, 1971–1979.

    Article  PubMed  CAS  Google Scholar 

  33. Chen, Y., Guarnieri, M. T., Vasil, A. I., Vasil, M. L., Mant, C. T., & Hodges, R. S. (2007). Role of peptide hydrophobicity in the mechanism of action of {alpha}-helical antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 51, 1398–1406.

    Article  PubMed  CAS  Google Scholar 

  34. Mousavy, S. J., Riazi, G. H., Kamarei, M., Aliakbarian, H., Sattarahmady, N., Sharifizadeh, A., et al. (2009). Effects of mobile phone radiofrequency on the structure and function of the normal human hemoglobin. International Journal of Biological Macromolecules, 44, 278–285.

    Article  PubMed  CAS  Google Scholar 

  35. Dayer, M. R., Moosavi-Movahedi, A. A., Norouzi, P., Ghourchian, H., & Safarian, S. (2002). Inhibition of human hemoglobin autoxidation by sodium n-dodecyl sulphate. Journal of Biochemistry and Molecular Biology, 35, 364–370.

    Article  Google Scholar 

  36. Antonini, E., & Brunori, M. (1970). Hemoglobin. Annual Review of Biochemistry, 39, 977–1042.

    Article  PubMed  CAS  Google Scholar 

  37. Benesch, R. E., Benesch, R., & Yung, S. (1973). Equations for the spectrophotometric analysis of hemoglobin mixtures. Analytical Biochemistry, 55, 245–248.

    Article  PubMed  CAS  Google Scholar 

  38. Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of phage T4 head. Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  39. Koepke, J. A., Thoma, J. F., & Schmidt, R. M. (1975). Identification of human hemoglobins by use of isoelectric focusing in gel. Clinical Chemistry, 21, 1953–1955.

    PubMed  CAS  Google Scholar 

  40. Gasymov, O. K., & Glasgow, B. J. (2007). ANS fluorescence: Potential to augment the identification of the external binding sites of proteins. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics, 1774, 403–411.

    Article  CAS  Google Scholar 

  41. Tietz, N. W. & Andresen, B. D. (1986). Textbook of clinical chemistry. Philadelphia: WB Saunders Co, pp. 1701–1703.

  42. Salhany, J. M. (2008). Kinetics of reaction of nitrite with deoxy hemoglobin after rapid deoxygenation or predeoxygenation by dithionite measured in solution and bound to the cytoplasmic domain of band 3 (SLC4A1). Biochemistry, 47, 6059–6072.

    Article  PubMed  CAS  Google Scholar 

  43. Weiland, T. R., Kundu, S., Trent Iii, J. T., Hoy, J. A., & Hargrove, M. S. (2004). Bis-histidyl hexacoordination in hemoglobins facilitates heme reduction kinetics. Journal of the American Chemical Society, 126, 11930–11935.

    Article  PubMed  CAS  Google Scholar 

  44. Stevens, J., Uchida, T., Daltrop, O., & Ferguson, S. (2005). Covalent cofactor attachment to proteins: Cytochrome c biogenesis. Biochemical Society Transactions, 33, 792–795.

    Article  PubMed  CAS  Google Scholar 

  45. Widdop, B. (2002). Analysis of carbon monoxide. Annals of Clinical Biochemistry, 39, 378–391.

    Article  PubMed  CAS  Google Scholar 

  46. Kiger, L., Poyart, C., & Marden, M. C. (1998). CO binding and valency exchange in asymmetric Hb hybrids. Biochemistry, 37, 14643–14650.

    Article  PubMed  CAS  Google Scholar 

  47. Archer, S. L., Hampl, V., Nelson, D. P., Sidney, E., Peterson, D. A., & Weir, E. K. (1995). Dithionite increases radical formation and decreases vasoconstriction in the lung: Evidence that dithionite does not mimic alveolar hypoxia. Circulation Research, 77, 174–181.

    PubMed  CAS  Google Scholar 

  48. Nelson, D. L., & Cox, M. M. (2005). Lehninger principles of biochemistry (4th ed.). New York: W. H. Freeman.

    Google Scholar 

  49. Ajloo, D., Moosavi-Movahedi, A. A., Sadeghi, M., & Gharibi, H. (2002). Comparative structural and functional studies of avian and mammalian hemoglobins. Acta Biochimica Polonica, 49, 459–470.

    PubMed  CAS  Google Scholar 

  50. Wilmshurst, P. (1998). Diving and oxygen. British Medical Journal, 317, 996–999.

    Article  PubMed  CAS  Google Scholar 

  51. Bemis, W., Findeis, E., & Grande, L. (1997). An overview of Acipenseriformes. Environmental Biology of Fishes, 48, 25–71.

    Article  Google Scholar 

  52. Bemis, W., & Kynard, B. (1997). Sturgeon rivers: An introduction to Acipenseriform biogeography and life history. Environmental Biology of Fishes, 48, 167–183.

    Article  Google Scholar 

  53. Jensen, F. B., Fago, A., & Weber, R. E. (1998). Hemoglobin structure and function. Fish Physiology, 17, 1–40.

    Article  Google Scholar 

  54. de Souza, P. C., & Bonilla-Rodriguez, G. O. (2007). Fish hemoglobins. Brazilian Journal of Medical and Biological Research, 40, 769–778.

    Article  PubMed  Google Scholar 

  55. Krieger, J., & Fuerst, P. A. (2002). Evidence for a slowed rate of molecular evolution in the order Acipenseriformes. Molecular Biology and Evolution, 19, 891–897.

    PubMed  CAS  Google Scholar 

  56. Gardiner, B. G. (1984). Sturgeons as living fossils. In N. Eldredce & S. M. Stanley (Ed.), Living fossils pp. 148–152. New York: Springer-Verlag.

  57. Moosavi-Movahedi, A. A., Chamani, J., Goto, Y., & Hakimelahi, G. H. (2003). Formation of the molten globule-like state of cytochrome c induced by n-alkyl sulfates at low concentrations. Journal of Biochemistry (Tokyo), 133, 93–102.

    Article  CAS  Google Scholar 

  58. Layon, A. J., & Modell, J. H. (2009). Drowning: Update 2009. Anesthesiology, 110, 1390–1401.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The financial supports of the Research Council of the University of Tehran, Iran National Science Foundation (INSF) and IAU are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Moosavi-Movahedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariaeenejad, S., Habibi-Rezaei, M., Jamili, S. et al. Biochemical Characterization of Hemoglobins from Caspian Sea Sturgeons (Acipenser persicus and Acipenser stellatus). Cell Biochem Biophys 62, 73–81 (2012). https://doi.org/10.1007/s12013-011-9261-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9261-x

Keywords

Navigation