Skip to main content
Log in

Structural Stability as a Probe for Molecular Evolution of Homologous Albumins Studied by Spectroscopy and Bioinformatics

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Equilibrium unfolding by guanidinium hydrochloride (GuHCl) and urea as well as evolutionary trends of two homologous albumins, pig serum albumin (PSA) and rabbit serum albumin (RSA), has been studied with circular dichroism, tryptophanyl fluorescence and bioinformatics. GuHCl cannot distinguish the contribution of electrostatic interactions to the proteins which were otherwise effectively monitored by urea. Higher differences in free energy changes due to urea than GuHCl show electrostatic interactions among charged amino acids are possibly responsible for higher structural stability of RSA in comparison to PSA. From the sequence of HSA and RSA, deletion of arginine at position 117 and the presence of one extra tryptophan at position 135 may possess some clue for lesser stability of PSA. Here, for comparison, chemical unfolding data of HSA and BSA had been taken into consideration. We found that thermodynamically RSA and PSA are closer to HSA and BSA, respectively, in accordance with their sequence homologies. Taxonomically, rabbit belongs to lagomorph which is closer to hominids than ungulates. Hence, on the basis of these thermodynamic data of protein denaturation of different species we can use this new approach to analyze the phylogenetic relationship among the major clades of eutherian mammals to obtain their evolutionary trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CD:

Circular dichroism

ΔC hydp :

Net heat capacity change of hydration

GuHCl:

Guanidinium hydrochloride

\( \Updelta G_{\text{u}}^{\text{w}} \) :

Change in unfolding free energy in the absence of denaturant

HSA:

Human serum albumin

MRE:

Mean residue ellipticity

PSA:

Porcine serum albumin

RSA:

Rabbit serum albumin

References

  1. Peters, T., Jr. (1996). All about albumin: Biochemistry, genetics, and medical applications. California: Academic Press.

    Google Scholar 

  2. Dockal, M., Carter, D. C., & Ruker, F. (2000). Five recombinant fragments of human serum albumin-tools for the characterization of the warfarin binding site. J Biol Chem, 275, 3042–3050.

    Article  CAS  PubMed  Google Scholar 

  3. Muzammil, S., Kumar, Y., & Tayyab, S. (2000). Anion-induced stabilization of human serum albumin prevents the formation of intermediate during urea denaturation. Proteins, 40, 29–38.

    Article  CAS  PubMed  Google Scholar 

  4. Khan, M. Y., Agarwal, S. K., & Hangloo, S. (1987). Urea-induced structural transformations in bovine serum albumin. Journal of Biochemistry, 102, 313–317.

    CAS  PubMed  Google Scholar 

  5. Halim, A. A. A., Kadir, H. A., & Tayyab, S. (2008). Bromophenol blue binding as a probe to study urea and guanidine hydrochloride denaturation of bovine serum albumin. Journal of Biochemistry, 144, 33–38.

    Article  PubMed  Google Scholar 

  6. Kosa, T., Maruyama, T., Sakai, N., Yonemura, N., Yahara, S., & Otagiri, M. (1998). Species differences of serum albumins: III. Analysis of structural characteristics and ligand binding properties during N-B transitions. Pharmaceutical Research, 15, 592–598.

    Article  CAS  PubMed  Google Scholar 

  7. Sen, P., Fatima, S., Khan, J. M., & Khan, R. H. (2009). How methyl cyanide induces aggregation in all-alpha proteins: A case study in four albumins. International Journal of Biological Macromolecules, 44, 163–169.

    Article  CAS  PubMed  Google Scholar 

  8. Gull, N., Sen, P., Khan, R. H., & Kabir-Ud-Din, (2009). Interaction of Bovine (BSA), Rabbit (RSA), and Porcine (PSA) serum albumins with cationic single-chain/gemini surfactants: A comparative study. Langmuir, 25, 11686–11691.

    Article  CAS  PubMed  Google Scholar 

  9. Ahmad, E., Naeem, A., Javed, S., Yadav, S., & Khan, R. H. (2007). The minimal structural requirement of concanavalin A that retains its functional aspects. Journal of Biochemistry, 142, 307–315.

    Article  CAS  PubMed  Google Scholar 

  10. Mizuguchi, M., Masaki, K., Demura, M., & Nitta, K. (2000). Local and long-range interactions in the molten globule state: A study of chimeric proteins of bovine and human alpha-lactalbumin. Journal of Molecular Biology, 298, 985–995.

    Article  CAS  PubMed  Google Scholar 

  11. Tayyab, S., Ahmad, B., Kumar, Y., & Khan, M. M. (2002). Salt-induced refolding in different domains of partially folded bovine serum albumin. International Journal of Biological Macromolecules, 30, 17–22.

    Article  CAS  PubMed  Google Scholar 

  12. Caballero-Herrera, A., Nordstrand, K., Berndt, K. D., & Nilsson, L. (2005). Effect of urea on peptide conformation in water: Molecular dynamics and experimental characterization. Biophysical Journal, 89, 842–857.

    Article  CAS  PubMed  Google Scholar 

  13. Caetano, W., Amaral, C. L., & Itri, R. (2006). The influence of urea on the structure of proteins in reversed micelles. J Nanosci Nanotechnol, 6, 2416–2424.

    Article  CAS  PubMed  Google Scholar 

  14. Tayyab, S., Sharma, N., & Khan, M. M. (2000). Use of domain specific ligands to study urea-induced unfolding of bovine serum albumin. Biochemical and Biophysical Research Communications, 277, 83–88.

    Article  CAS  PubMed  Google Scholar 

  15. Gill, S. C., & von Hippel, P. H. (1989). Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry, 182, 319–326.

    Article  CAS  PubMed  Google Scholar 

  16. Ahmad, E., Rahman, S. K., Khan, J. M., Varshney, A., & Khan, R. H. (2010). Phytolacca americana lectin (Pa-2; pokeweed mitogen): an intrinsically unordered protein and its conversion to partial order at low pH. Bioscience Reports, 30, 125–134.

    Article  CAS  Google Scholar 

  17. Kelley, L. A., & Sternberg, M. J. E. (2009). Protein structure prediction on the web: A case study using the Phyre server. Nature Protocols, 4, 363–371.

    Article  CAS  PubMed  Google Scholar 

  18. Bhattacharya, A. A., Curry, S., & Franks, N. P. (2000). Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. Journal of Biological Chemistry, 275, 38731–38738.

    Article  CAS  PubMed  Google Scholar 

  19. Jo, S., Vargyas, M., Vasko-Szedlar, J., Roux, B., & Im, W. (2008). PBEQ-Solver for online visualization of electrostatic potential of biomolecules. Nucleic Acids Research, 36, W270–W275.

    Article  CAS  PubMed  Google Scholar 

  20. Miteva, M. A., Tufféry, P., & Villoutreix, B. O. (2005). PCE: Web tools to compute protein continuum electrostatics. Nucleic Acids Research, 33, W372–W375.

    Article  CAS  PubMed  Google Scholar 

  21. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  22. Page, R. D. M. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357–358.

    CAS  PubMed  Google Scholar 

  23. Cheng, J., Randall, A., & Baldi, P. (2005). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62, 1125–1132.

    Article  Google Scholar 

  24. Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research, 34, W239–W242.

    Article  CAS  PubMed  Google Scholar 

  25. Soulages, J. L. (1998). Chemical denaturation: potential impact of undetected intermediates in the free energy of unfolding and m-values obtained from a two-state assumption. Biophysical Journal, 75, 484–492.

    Article  CAS  PubMed  Google Scholar 

  26. Carter, D. C., & Ho, J. X. (1994). Structure of serum albumin. Advances in Protein Chemistry, 45, 153–203.

    Article  CAS  PubMed  Google Scholar 

  27. Muzammil, S., Kumar, Y., & Tayyab, S. (1999). Molten globule-like state of human serum albumin at low pH. European Journal of Biochemistry, 266, 26–32.

    Article  CAS  PubMed  Google Scholar 

  28. Chaudhuri, T. K., Arai, M., Terada, T. P., Ikura, T., & Kuwajima, K. (2000). Equilibrium and kinetic studies on folding of the authentic and recombinant forms of human alpha-lactalbumin by circular dichroism spectroscopy. Biochemistry, 39, 15643–15651.

    Article  CAS  PubMed  Google Scholar 

  29. Im, W., Beglov, D., & Roux, B. (1998). Continuum solvation model: computation of electrostatic forces from numerical solutions to the Poisson–Boltzmann equation. Computer Physics Communications, 111, 59–75.

    Article  CAS  Google Scholar 

  30. Ahmad, F., & Salahuddin, A. (1976). Reversible unfolding of the major fraction of ovalbumin by guanidine hydrochloride. Biochemistry, 15, 5168–5175.

    Article  CAS  PubMed  Google Scholar 

  31. Farruggia, B., & Pico, G. A. (1999). Thermodynamic features of the chemical and thermal denaturations of human serum albumin. International Journal of Biological Macromolecules, 26, 317–323.

    Article  CAS  PubMed  Google Scholar 

  32. Alur, R. P., Vijayasarathy, C., Brown, J. D., Mehtani, M., Onojafe, I. F., Sergeev, Y. V., et al. (2010). Papillorenal syndrome-causing missense mutations in PAX2/Pax2 result in hypomorphic alleles in mouse and human. PLoS Genet, 6, e1000870.

    Article  PubMed  Google Scholar 

  33. Furukawa, Y., Fu, R., Deng, H. X., Siddique, T., & O’Halloran, T. V. (2006). Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 7148–7153.

    Article  CAS  PubMed  Google Scholar 

  34. Tamura, H., Schild, L., Enomoto, N., Matsui, N., Marumo, F., & Rossier, B. C. (1996). Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene. Journal of Clinical Investigation, 97, 1780–1784.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, L., Doné, S. C., Khoshnoodi, J., Bertorello, A., Wartiovaara, J., Berggren, P. O., et al. (2001). Defective nephrin trafficking caused by missense mutations in the NPHS1 gene: Insight into the mechanisms of congenital nephrotic syndrome. Human Molecular Genetics, 10, 2637–2644.

    Article  CAS  PubMed  Google Scholar 

  36. Wilkie, S. E., Vaclavik, V., Wu, H., Bujakowska, K., Chakarova, C. F., Bhattacharya, S. S., et al. (2008). Disease mechanism for retinitis pigmentosa (RP11) caused by missense mutations in the splicing factor gene PRPF31. Molecular Vision, 14, 683–690.

    CAS  PubMed  Google Scholar 

  37. Gull, N., Sen, P., & Kabir-Ud-Din, Khan. R. H. (2007). Effect of physiological concentration of urea on the conformation of human serum albumin. Journal of Biochemistry, 141, 261–268.

    Article  CAS  PubMed  Google Scholar 

  38. Levy, M. (1958). Titration of bovine serum albumin in urea and in formaldehyde solutions. Comptes Rendus des Travaux du Laboratoire Carlsberg, 30, 301–308.

    CAS  Google Scholar 

  39. Leggio, C., Galantini, L., Konarev, P. V., & Pavel, N. V. (2009). Urea-induced denaturation process on defatted human serum albumin and in the presence of palmitic acid. Journal of Physical Chemistry B, 113, 12590–12602.

    Article  CAS  Google Scholar 

  40. Timasheff, S. (1992). Water as ligand: preferential binding and exclusion of denaturants in protein unfolding. Biochemistry, 31, 9857–9864.

    Article  CAS  PubMed  Google Scholar 

  41. Myers, J. K., Pace, C. N., & Scholtz, J. (1995). Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. Protein Science, 4, 2138–2148.

    Article  CAS  PubMed  Google Scholar 

  42. Stumpe, M. C., & Grubmuller, H. (2009). Urea impedes the hydrophobic collapse of partially unfolded proteins. Biophysical Journal, 96, 3744–3752.

    Article  CAS  PubMed  Google Scholar 

  43. Akhtar, M. S., Ahmad, A., & Bhakuni, V. (2002). Divalent cation induced changes in structural properties of the dimeric enzyme glucose oxidase: Dual effect of dimer stabilization and dissociation with loss of cooperative interactions in enzyme monomer. Biochemistry, 41, 3819–3827.

    Article  CAS  PubMed  Google Scholar 

  44. Robinson, D. R., & Jencks, W. P. (1965). The effect of compounds of the urea-guanidinium class on the activity coefficient of acetyltetraglycine ethyl ester and related compounds. Journal of the American Chemical Society, 87, 2462–2470.

    Article  CAS  PubMed  Google Scholar 

  45. Pace, C. N. (1986). Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods in Enzymology, 131, 266–280.

    Article  CAS  PubMed  Google Scholar 

  46. Mayo, S. L., & Baldwin, R. L. (1993). Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science, 262, 873–876.

    Article  CAS  PubMed  Google Scholar 

  47. Monera, O. D., Kay, C. M., & Hodges, R. S. (1994). Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Science, 3, 1984–1991.

    Article  CAS  PubMed  Google Scholar 

  48. O’Brien, E. P., Dima, R. I., Brooks, B., & Thirumalai, D. (2007). Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: Lessons for protein denaturation mechanism. Journal of the American Chemical Society, 129, 7346–7353.

    Article  PubMed  Google Scholar 

  49. Fulton, K. F., Jackson, S. E., & Buckle, A. M. (2003). Energetic and structural analysis of the role of tryptophan 59 in FKBP12. Biochemistry, 42, 2364–2372.

    Article  CAS  PubMed  Google Scholar 

  50. Strub, C., Alies, C., Lougarre, A., Ladurantie, C., Czaplicki, J., & Fournier, D. (2004). Mutation of exposed hydrophobic amino acids to arginine to increase protein stability. BMC Biochemistry, 5, 9.

    Article  PubMed  Google Scholar 

  51. Jandu, S. K., Ray, S., Brooks, L., & Leatherbarrow, R. J. (1990). Role of arginine 67 in the stabilization of chymotrypsin inhibitor 2: Examination of amide proton exchange rates and denaturation thermodynamics of an engineered protein. Biochemistry, 29, 6264–6269.

    Article  CAS  PubMed  Google Scholar 

  52. Trovato, R., Mulloy, J. C., Johnson, J. M., Takemoto, S., de Oliveira, M. P., & Franchini, G. (1999). A lysine-to-arginine change found in natural alleles of the human T-cell lymphotropic/leukemia virus type 1 p12(I) protein greatly influences its stability. Journal of Virology, 73, 6460–6467.

    CAS  PubMed  Google Scholar 

  53. Vogt, G., Woell, S., & Argos, P. (1997). Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 269, 631–643.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

E. Ahmad and P. Sen thank Council of Scientific and Industrial Research, and Department of Biotechnology, Govt. of India for financial assistance in the form of SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Hasan Khan.

Additional information

Ejaz Ahmad and Priyankar Sen contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, E., Sen, P. & Khan, R.H. Structural Stability as a Probe for Molecular Evolution of Homologous Albumins Studied by Spectroscopy and Bioinformatics. Cell Biochem Biophys 61, 313–325 (2011). https://doi.org/10.1007/s12013-011-9214-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9214-4

Keywords

Navigation