Skip to main content
Log in

Effects of Menadione, Hydrogen Peroxide, and Quercetin on Apoptosis and Delayed Luminescence of Human Leukemia Jurkat T-Cells

  • Original Research
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Menadione (MD) is an effective cytotoxic drug able to produce intracellularly large amounts of superoxide anion. Quercetin (QC), a widely distributed bioflavonoid, can exert both antioxidant and pro-oxidant effects and is known to specifically inhibit cell proliferation and induce apoptosis in different cancer cell types. We have investigated the relation between delayed luminescence (DL) induced by UV-laser excitation and the effects of MD, hydrogen peroxide, and QC on apoptosis and cell cycle in human leukemia Jurkat T-cells. Treatments with 500 μM H2O2 and 250 μM MD for 20 min produced 66.0 ± 4.9 and 46.4 ± 8.6% apoptotic cell fractions, respectively. Long-term (24 h) pre-exposure to 5 μM, but not 0.5 μM QC enhanced apoptosis induced by MD, whereas short-term (1 h) pre-incubation with 10 μM QC offered 50% protection against H2O2-induced apoptosis, but potentiated apoptosis induced by MD. Since physiological levels of QC in the blood are normally less than 10 μM, these data can provide relevant information regarding the benefits of flavonoid-combined treatments of leukemia. All the three drugs exerted significant effects on DL. Our data are consistent with (1) the involvement of Complex I of the mitochondrial respiratory chain as an important source of delayed light emission on the 10 μs–10 ms scale, (2) the ability of superoxide anions to quench DL on the 100 μs–10 ms scale, probably via inhibition of reverse electron transfer at the Fe/S centers in Complex I, and (3) the relative insensitivity of DL to intracellular OH and H2O2 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Laux, I., & Nel, A. (2001). Evidence that oxidative stress-induced apoptosis by menadione involves Fas-dependent and Fas-independent pathways. Clinical Immunology, 101, 335–344.

    Article  CAS  PubMed  Google Scholar 

  2. Matzno, S., Yamaguchi, Y., Akiyoshi, T., Nakabayashi, T., & Matsuyama, K. (2008). An attempt to evaluate the effect of vitamin K3 using as an enhancer of anticancer agents. Biological and Pharmaceutical Bulletin, 31, 1270–1273.

    Article  CAS  PubMed  Google Scholar 

  3. Brière, J. J., Schlemmer, D., Chretien, D., & Rustin, P. (2004). Quinone analogues regulate mitochondrial substrate competitive oxidation. Biochemical and Biophysical Research Communications, 316, 1138–1142.

    Article  PubMed  Google Scholar 

  4. Criddle, D. N., Gerasimenko, J. V., Baumgartner, H. K., Jaffar, M., Voronina, S., Sutton, R., et al. (2007). Calcium signalling and pancreatic cell death: Apoptosis or necrosis? Cell Death and Differentiation, 14, 1285–1294.

    Article  CAS  PubMed  Google Scholar 

  5. Floreani, M., & Carpenedo, F. (1992). One- and two-electron reduction of menadione in guinea-pig and rat cardiac tissue. General Pharmacology, 23, 757–762.

    CAS  PubMed  Google Scholar 

  6. Chen, D., Daniel, K. G., Chen, M. S., Kuhn, D. J., Landis-Piwowar, K. R., & Dou, Q. P. (2005). Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochemical Pharmacology, 69, 1421–1432.

    Article  CAS  PubMed  Google Scholar 

  7. De Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., et al. (2000). In vitro evaluation of newly developed chalcone analogues in human cancer cells. Cancer Chemotherapy and Pharmacology, 46, 305–312.

    Article  PubMed  Google Scholar 

  8. Ferraresi, R., Troiano, L., Roat, E., Lugli, E., Nemes, E., Nasi, M., et al. (2005). Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin. Free Radical Research, 39, 1249–1258.

    Article  CAS  PubMed  Google Scholar 

  9. Jeong, J. H., An, J. Y., Kwon, Y. T., Rhee, J. G., & Lee, Y. J. (2009). Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. Journal of Cellular Biochemistry, 106, 73–82.

    Article  CAS  PubMed  Google Scholar 

  10. Kim, G. N., & Jang, H. D. (2009). Protective mechanism of quercetin and rutin using glutathione metabolism on H2O2-induced oxidative stress in HepG2 cells. Annals of the New York Academy of Sciences, 1171, 530–537.

    Article  CAS  PubMed  Google Scholar 

  11. Kim, B. M., Choi, Y. J., Han, Y., Yun, Y. S., & Hong, S. H. (2009). N, N-dimethyl phytosphingosine induces caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells. Toxicology and Applied Pharmacology, 239, 87–97.

    Article  CAS  PubMed  Google Scholar 

  12. Rao, Y. K., Geethangili, M., Fang, S. H., & Tzeng, Y. M. (2007). Antioxidant and cytotoxic activities of naturally occurring phenolic and related compounds: A comparative study. Food and Chemical Toxicology, 45, 1770–1776.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Q., Zhao, X. H., & Wang, Z. J. (2009). Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicology in Vitro, 23, 797–807.

    Article  CAS  PubMed  Google Scholar 

  14. Yen, G. C., Duh, P. D., Tsai, H. L., & Huang, S. L. (2003). Pro-oxidative properties of flavonoids in human lymphocytes. Bioscience, Biotechnology, and Biochemistry, 67, 1215–1222.

    Article  CAS  PubMed  Google Scholar 

  15. Fiorani, M., Guidarelli, A., Blasa, M., Azzolini, C., Candiracci, M., Piatti, E., et al. (2010). Mitochondria accumulate large amounts of quercetin: Prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. The Journal of Nutritional Biochemistry, 21, 397–404.

    Article  CAS  PubMed  Google Scholar 

  16. De Marchi, U., Biasutto, L., Garbisa, S., Toninello, A., & Zoratti, M. (2009). Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: A demonstration of the ambivalent redox character of polyphenols. Biochimica et Biophysica Acta, 1787, 1425–1432.

    Article  PubMed  Google Scholar 

  17. Dorta, D. J., Pigoso, A. A., Mingatto, F. E., Rodrigues, T., Prado, I. M., Helena, A. F., et al. (2005). The interaction of flavonoids with mitochondria: Effects on energetic processes. Chemico-Biological Interactions, 152, 67–78.

    Article  CAS  PubMed  Google Scholar 

  18. Metodiewa, D., Jaiswal, A. K., Cenas, N., Dickancaité, E., & Segura-Aguilar, J. (1999). Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radical Biology and Medicine, 26, 107–116.

    Article  CAS  PubMed  Google Scholar 

  19. Barbouti, A., Amorgianiotis, C., Kolettas, E., Kanavaros, P., & Galaris, D. (2007). Hydrogen peroxide inhibits caspase-dependent apoptosis by inactivating procaspase-9 in an iron-dependent manner. Free Radical Biology and Medicine, 43, 1377–1387.

    Article  CAS  PubMed  Google Scholar 

  20. Chien, S. Y., Wu, Y. C., Chung, J. G., Yang, J. S., Lu, H. F., Tsou, M. F., et al. (2009). Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Human and Experimental Toxicology, 28, 493–503.

    Article  CAS  PubMed  Google Scholar 

  21. Dumont, A., Hehner, S. P., Hofmann, T. G., Ueffing, M., Dröge, W., & Schmitz, M. L. (1999). Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene, 18, 747–757.

    Article  CAS  PubMed  Google Scholar 

  22. Foster, K. A., Galeffi, F., Gerich, F. J., Turner, D. A., & Müller, M. (2006). Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Progress in Neurobiology, 79, 136–171.

    Article  CAS  PubMed  Google Scholar 

  23. Godar, D. E. (1999). UVA1 radiation triggers two different final apoptotic pathways. Journal of Investigative Dermatology, 112, 3–12.

    Article  CAS  PubMed  Google Scholar 

  24. Long, X., Goldenthal, M. J., Wu, G. M., & Marín-García, J. (2004). Mitochondrial Ca2+ flux and respiratory enzyme activity decline are early events in cardiomyocytes response to H2O2. Journal of Molecular and Cellular Cardiology, 37, 63–70.

    Article  CAS  PubMed  Google Scholar 

  25. Macho, A., Hirsch, T., Marzo, I., Marchetti, P., Dallaporta, B., Susin, S. A., et al. (1997). Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. Journal of Immunology, 158, 4612–4619.

    CAS  Google Scholar 

  26. Saito, Y., Nishio, K., Ogawa, Y., Kimata, J., Kinumi, T., Yoshida, Y., et al. (2006). Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radical Research, 40, 619–630.

    Article  CAS  PubMed  Google Scholar 

  27. Lyamzaev, K. G., Izyumov, D. S., Avetisyan, A. V., Yang, F., Pletjushkina, O. Y., & Chernyak, B. V. (2004). Inhibition of mitochondrial bioenergetics: The effects on structure of mitochondria in the cell and on apoptosis. Acta Biochimica Polonica, 51, 553–562.

    CAS  PubMed  Google Scholar 

  28. Ortner, M. A., Ebert, B., Hein, E., Zumbusch, K., Nolte, D., Sukowski, U., et al. (2003). Time gated fluorescence spectroscopy in Barrett’s oesophagus. Gut., 52, 28–33.

    Article  PubMed  Google Scholar 

  29. Musumeci, F., Applegate, L. A., Privitera, G., Scordino, A., Tudisco, S., & Niggli, H. J. (2005). Spectral analysis of laser-induced ultraweak delayed luminescence in cultured normal and tumor human cells: Temperature dependence. Journal of Photochemistry and Photobiology B: Biology, 79, 93–99.

    Article  CAS  Google Scholar 

  30. Kim, H. W., Sim, S. B., Kim, C. K., Kim, J., Choi, C., You, H., et al. (2005). Spontaneous photon emission and delayed luminescence of two types of human lung cancer tissues: Adenocarcinoma and squamous cell carcinoma. Cancer Letters, 229, 283–289.

    Article  CAS  PubMed  Google Scholar 

  31. Kemmner, W., Wan, K., Rüttinger, S., Ebert, B., Macdonald, R., Klamm, U., et al. (2008). Silencing of human ferrochelatase causes abundant protoporphyrin-IX accumulation in colon cancer. FASEB Journal, 22, 500–509.

    Article  CAS  PubMed  Google Scholar 

  32. Mik, E. G., Johannes, T., Zuurbier, C. J., Heinen, A., Houben-Weerts, J. H., Balestra, G. M., et al. (2008). In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophysical Journal, 95, 3977–3990.

    Article  CAS  PubMed  Google Scholar 

  33. Felker, P., Izawa, S., Good, N. E., & Haug, A. (1973). Effects of electron transport inhibitors on millisecond delayed light emission from chloroplasts. Biochimica et Biophysica Acta, 325, 193–196.

    Article  CAS  PubMed  Google Scholar 

  34. Popp, F. A., Nagl, W., Li, K. H., Scholz, W., Weingartner, O., & Wolf, R. (1984). Biophoton emission. New evidence for coherence and DNA as source. Cell Biophysics, 6, 33–52.

    CAS  PubMed  Google Scholar 

  35. Slawinski, J. (1988). Luminescence research and its relation to ultraweak cell radiation. Experientia, 44, 559–571.

    Article  CAS  PubMed  Google Scholar 

  36. Hideg, E., Kobayashi, M., & Inaba, H. (1991). Spontaneous ultraweak light emission from respiring spinach leaf mitochondria. Biochimica et Biophysica Acta, 1098, 27–31.

    Article  CAS  Google Scholar 

  37. Tudisco, S., Scordino, A., Privitera, G., Baran, I., & Musumeci, F. (2004). ARETUSA – Advanced research equipment for fast ultraweak luminescence analysis: New developments. Nuclear Instruments and Methods in Physics Research Section A, 518, 463–464.

    Article  CAS  Google Scholar 

  38. Goltsev, V., Chernev, P., Zaharieva, I., Lambrev, P., & Strasser, R. J. (2005). Kinetics of delayed chlorophyll a fluorescence registered in milliseconds time range. Photosynthesis Research, 84, 209–215.

    Article  CAS  PubMed  Google Scholar 

  39. Katsumata, M., Takeuchi, A., Kazumura, K., & Koike, T. (2008). New feature of delayed luminescence: Preillumination-induced concavity and convexity in delayed luminescence decay curve in the green alga Pseudokirchneriella subcapitata. Journal of Photochemistry and Photobiology B: Biology, 90, 152–162.

    Article  CAS  Google Scholar 

  40. Guo, Y., & Tan, J. (2009). A kinetic model structure for delayed fluorescence from plants. BioSystems, 95, 98–103.

    Article  CAS  PubMed  Google Scholar 

  41. Baran, I., Ganea, C., Ursu, I., Musumeci, F., Scordino, A., Tudisco, S., et al. (2009). Effects of nocodazole and ionizing radiation on cell proliferation and delayed luminescence. Romanian Journal of Physics, 54, 557–567.

    CAS  Google Scholar 

  42. Koczor, C. A., Shokolenko, I. N., Boyd, A. K., Balk, S. P., Wilson, G. L., & Ledoux, S. P. (2009). Mitochondrial DNA damage initiates a cell cycle arrest by a Chk2-associated mechanism in mammalian cells. The Journal of Biological Chemistry, 284, 36191–36201.

    Article  CAS  PubMed  Google Scholar 

  43. Seomun, Y., Kim, J. T., Kim, H. S., Park, J. Y., & Joo, C. K. (2005). Induction of p21Cip1-mediated G2/M arrest in H2O2-treated lens epithelial cells. Molecular Vision, 11, 764–774.

    CAS  PubMed  Google Scholar 

  44. Khan, A. U. (1978). Activated oxygen: Singlet molecular oxygen and superoxide anion. Photochemistry and Photobiology, 28, 615–626.

    Article  CAS  Google Scholar 

  45. Chen, Z. H., Saito, Y., Yoshida, Y., & Niki, E. (2008). Effect of oxygen concentration on free radical-induced cytotoxicity. Bioscience, Biotechnology, and Biochemistry, 72, 1491–1497.

    Article  CAS  PubMed  Google Scholar 

  46. Verkhovskaya, M. L., Belevich, N., Euro, L., Wikström, M., & Verkhovsky, M. I. (2008). Real-time electron transfer in respiratory complex I. Proceedings of the National Academy of Sciences of the United States of America, 105, 3763–3767.

    Article  CAS  PubMed  Google Scholar 

  47. Swartz, T. E., Corchnoy, S. B., Christie, J. M., Lewis, J. W., Szundi, I., Briggs, W. R., et al. (2001). The photocycle of a flavine-binding domain of the blue light photoreceptor phototropin. The Journal of Biological Chemistry, 276, 36493–36500.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Romanian Ministry of Education and Research under CNCSIS-UEFISCSU Grant PNII-IDEI no. 1138/2009, code 1449/2008, and CNMP Grant PNII-Partnership no. 71-073/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Baran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baran, I., Ganea, C., Scordino, A. et al. Effects of Menadione, Hydrogen Peroxide, and Quercetin on Apoptosis and Delayed Luminescence of Human Leukemia Jurkat T-Cells. Cell Biochem Biophys 58, 169–179 (2010). https://doi.org/10.1007/s12013-010-9104-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9104-1

Keywords

Navigation