Skip to main content
Log in

Recent Applications of Kirkwood–Buff Theory to Biological Systems

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The effect of cosolvents on biomolecular equilibria has traditionally been rationalized using simple binding models. More recently, a renewed interest in the use of Kirkwood–Buff (KB) theory to analyze solution mixtures has provided new information on the effects of osmolytes and denaturants and their interactions with biomolecules. Here we review the status of KB theory as applied to biological systems. In particular, the existing models of denaturation are analyzed in terms of KB theory, and the use of KB theory to interpret computer simulation data for these systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29, 7133–7155.

    PubMed  CAS  Google Scholar 

  2. Timasheff, S. N. (1998). Control of protein stability and reactions by weakly interacting cosolvents: The simplicity of the complicated. Advances in Protein Chemistry, 51, 355–432.

    PubMed  CAS  Google Scholar 

  3. von Hippel, P. H., & Schleich, T. (1969). Ion effects on solution structure of biological macromolecules. Accounts of Chemical Research, 2, 257–265.

    Google Scholar 

  4. Franks, F., & Eagland, D. (1975). The role of solvent interactions in protein conformation CRC. Critical Reviews in Biochemistry, 3, 165–219.

    PubMed  CAS  Google Scholar 

  5. Collins, K. D., & Washabaugh, M. W. (1985). The Hofmeister effect and the behaviour of water at interfaces. Quarterly Reviews of Biophysics, 18, 323–422.

    PubMed  CAS  Google Scholar 

  6. Anderson, C. F., & Record, M. T. Jr. (1990). Ion distributions around DNA and other cylindrical polyions: theoretical descriptions and physical implications. Annual Review of Biophysics and Biophysical Chemistry, 19, 423–465.

    PubMed  CAS  Google Scholar 

  7. Timasheff, S. N. (1992). Water as ligand—Preferential binding and exclusion of denaturants in protein unfolding. Biochemistry, 31, 9857–9864.

    PubMed  CAS  Google Scholar 

  8. Buck, M. (1998). Trifluoroethanol and colleagues: Cosolvents come of age. Recent studies with peptides and proteins. Quarterly Reviews of Biophysics, 31, 297–355.

    PubMed  CAS  Google Scholar 

  9. Nosworthy, N. J., & Ginsburg, A. (1997). Thermal unfolding of dodecameric glutamine synthetase: Inhibition of aggregation by urea. Protein Science, 6, 2617–2623.

    Article  PubMed  CAS  Google Scholar 

  10. Voziyan, P. A., Jadhav, L., & Fisher, M. T. (2000). Refolding a glutamine synthetase truncation mutant in vitro: Identifying superior conditions using a combination of chaperonins and osmolytes. Journal of Pharmaceutical Sciences, 89, 1036–1045.

    PubMed  CAS  Google Scholar 

  11. Baynes, B. M., & Trout, B. L. (2004). Rational design of solution additives for the prevention of protein aggregation. Biophysical Journal, 87, 1631–1639.

    PubMed  CAS  Google Scholar 

  12. Klimov, D. K., Straub, J. E., & Thirumalai, D. (2004). Aqueous urea solution destabilizes A beta(16–22) oligomers. Proceedings of the National Academy of Sciences of the United States of America, 101, 14760–14765.

    PubMed  CAS  Google Scholar 

  13. Liu, R., Barkhordarian, H., Emadi, S., Park, C. B., & Sierks, M. R. (2005). Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiology of Disease, 20, 74–81.

    PubMed  Google Scholar 

  14. Narayanan, S., & Reif, B. (2005). Characterization of chemical exchange between soluble and aggregated states of beta-amyloid by solution-state NMR upon variation of salt conditions. Biochemistry, 44, 1444–1452.

    PubMed  CAS  Google Scholar 

  15. Smith, P. E. (2005). Protein volume changes on cosolvent denaturation. Biophysical Chemistry, 113, 299–302.

    PubMed  CAS  Google Scholar 

  16. Arakawa, T., Ejima, D., Tsumoto, K., Obeyama, N., Tanaka, Y., Kita, Y., & Timasheff, S. N. (2007). Suppression of protein interactions by arginine: A proposed mechanism of arginine effects. Biophysical Chemistry, 127, 1–8.

    PubMed  CAS  Google Scholar 

  17. Wyman, J. Jr. (1964). Linked functions and reciprocal effects in hemoglobin: A second look. Advances in Protein Chemistry, 19, 223–286.

    PubMed  CAS  Google Scholar 

  18. Tanford, C. (1968). Protein denaturation. Advances in Protein Chemistry, 23, 121–282.

    PubMed  CAS  Google Scholar 

  19. Eisenberg, H. (1976). Biological macromolecules and polyelectrolytes in solution. Oxford: Clarendon Press.

    Google Scholar 

  20. Parsegian, V. A., Rand, R. P., Fuller, N. L., & Rau, D. C. (1986). Osmotic-stress for the direct measurement of intermolecular forces. Methods in Enzymology, 127, 400–416.

    PubMed  CAS  Google Scholar 

  21. Kirkwood, J. G., & Goldberg, R. J. (1950). Light scattering arising from composition fluctuations in multi-component systems. Journal of Chemical Physics, 18, 54–57.

    CAS  Google Scholar 

  22. Eisenberg, H. (1994). Protein and nucleic acid hydration and cosolvent interactions: Establishment of reliable baseline values at high cosolvent concentrations. Biophysical Chemistry, 53, 57–68.

    PubMed  CAS  Google Scholar 

  23. Stockmayer, W. H. (1950). Light scattering in multi-component systems. Journal of Chemical Physics, 18, 58–61.

    CAS  Google Scholar 

  24. Schellman, J. A. (2002). Fifty years of solvent denaturation. Biophysical Chemistry, 96, 91–101.

    PubMed  CAS  Google Scholar 

  25. Tanford, C. (1970). Protein denaturation. C. Theoretical models for the mechanism of denaturation. Advances in Protein Chemistry, 24, 1–95.

    PubMed  CAS  Google Scholar 

  26. Dunbar, J., Yennawar, H. P., Banerjee, S., Luo, J., & Farber, G. K. (1997). The effect of denaturants on protein structure. Protein Science, 6, 1727–1733.

    PubMed  CAS  Google Scholar 

  27. Hibbard, L. S., & Tulinsky, A. (1978). Expression of functionality of alpha-chymotrypsin. Effects of guanidine hydrochloride and urea in the onset of denaturation. Biochemistry, 17, 5460–5468.

    PubMed  CAS  Google Scholar 

  28. Neri, D., Billeter, M., Wider, G., & Wuthrich, K. (1992). Nmr determination of residual structure in a urea-denatured protein, the 434-repressor. Science, 257, 1559–1563.

    PubMed  CAS  Google Scholar 

  29. Liepinsh, E., & Otting, G. (1994). Specificity of urea binding to proteins. Journal of the American Chemical Society, 116, 9670–9674.

    CAS  Google Scholar 

  30. Chen, L., Hodgson, K. O., & Doniach, S. (1996). A lysozyme folding intermediate revealed by solution X-ray scattering. Journal of Molecular Biology, 261, 658–671.

    PubMed  CAS  Google Scholar 

  31. Schwalbe, H., Fiebig, K. M., Buck, M., Jones, J. A., Grimshaw, S. B., Spencer, A., Glaser, S. J., Smith, L. J., & Dobson, C. M. (1997). Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry, 36, 8977–8991.

    PubMed  CAS  Google Scholar 

  32. Mande, S. C., & Sobhia, M. E. (2000). Structural characterization of protein–denaturant interactions: crystal structures of hen egg-white lysozyme in complex with DMSO and guanidinium chloride. Protein Engineering, 13, 133–141.

    PubMed  CAS  Google Scholar 

  33. Mattos, C., & Ringe, D. (2001). Proteins in organic solvents. Current Opinion in Structural Biology, 11, 761–764.

    PubMed  CAS  Google Scholar 

  34. Smith, P. E., & Pettitt, B. M. (1991). Effects of salt on the structure and dynamics of the bis(penicillamine) enkephalin zwitterion—A simulation study. Journal of the American Chemical Society, 113, 6029–6037.

    CAS  Google Scholar 

  35. Smith, P. E., & Pettitt, B. M. (1992). Amino acid side-chain populations in aqueous and saline solution: Bis-penicillamine enkephalin. Biopolymers, 32, 1623–1629.

    PubMed  CAS  Google Scholar 

  36. Smith, P. E., Marlow, G. E., & Pettitt, B. M. (1993). Peptides in ionic-solutions—A simulation study of a bis(penicillamine) enkephalin in sodium-acetate solution. Journal of the American Chemical Society, 115, 7493–7498.

    CAS  Google Scholar 

  37. Chitra, R., & Smith, P. E. (2000). Molecular dynamics simulations of the properties of cosolvent solutions. Journal of Physical Chemistry B, 104, 5854–5864.

    CAS  Google Scholar 

  38. Chitra, R., & Smith, P. E. (2001). A comparison of the properties of 2,2,2-trifluoroethanol and 2,2,2-trifluoroethanol/water mixtures using different force fields. Journal of Chemical Physics, 115, 5521–5530.

    CAS  Google Scholar 

  39. Chitra, R., & Smith, P. E. (2001). Properties of 2,2,2-trifluoroethanol and water mixtures. Journal of Chemical Physics, 114, 426–435.

    CAS  Google Scholar 

  40. Smith, P. E. (1999). Computer simulation of cosolvent effects on hydrophobic hydration. Journal of Physical Chemistry B, 103, 525–534.

    CAS  Google Scholar 

  41. Chitra, R., & Smith, P. E. (2001). Preferential interactions of cosolvents with hydrophobic solutes. Journal of Physical Chemistry B, 105, 11513–11522.

    CAS  Google Scholar 

  42. Smith, P. E. (2004). Cosolvent interactions with biomolecules: Relating computer simulation data to experimental thermodynamic data. Journal of Physical Chemistry B, 108, 18716–18724.

    CAS  Google Scholar 

  43. Casassa, E. F., & Eisenberg, H. (1964). Thermodynamics analysis of multicomponent solutions. Advances in Protein Chemistry, 19, 287–395.

    PubMed  CAS  Google Scholar 

  44. Ben-Naim, A. (1992). Statistical thermodynamics for chemists and biochemists. New York: Plenum Press.

    Google Scholar 

  45. Scatchard, G. (1946). Physical chemistry of protein solutions. 1. Derivation of the equations for the osmotic pressure. Journal of the American Chemical Society, 68, 2315–2319.

    CAS  Google Scholar 

  46. Wyman, J., & Gill, S. J. (1990). Binding and linkage. Mill Valley: University Science Books.

    Google Scholar 

  47. Tanford, C. (1969). Extension of theory of linked functions to incorporate effects of protein hydration. Journal of Molecular Biology, 39, 539–544.

    PubMed  CAS  Google Scholar 

  48. Schellman, J. A. (1987). The thermodynamic stability of proteins. Annual Review of Biophysics and Biophysical Chemistry, 16, 115–137.

    PubMed  CAS  Google Scholar 

  49. Schellman, J. A. (1990). A simple-model for solvation in mixed-solvents—Applications to the stabilization and destabilization of macromolecular structures. Biophysical Chemistry, 37, 121–140.

    PubMed  CAS  Google Scholar 

  50. Schellman, J. A. (1978). Solvent denaturation. Biopolymers, 17, 1305–1322.

    CAS  Google Scholar 

  51. Anderson, C. F., Felitsky, D. J., Hong, J., & Record, M. T. (2002). Generalized derivation of an exact relationship linking different coefficients that characterize thermodynamic effects of preferential interactions. Biophysical Chemistry, 101–102, 497–511.

    PubMed  Google Scholar 

  52. Hall, D. G. (1971). Kirkwood–Buff theory of solutions—Alternative derivation of part of it and some applications. Transactions of the Faraday Society, 67, 2516–2524.

    CAS  Google Scholar 

  53. Parsegian, V. A., Rand, R. P., & Rau, D. C. (2000). Osmotic stress, crowding, preferential hydration, and binding: A comparison of perspectives. Proceedings of the National Academy of Sciences of the United States of America, 97, 3987–3992.

    PubMed  CAS  Google Scholar 

  54. Shimizu, S. (2004). Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. Proceedings of the National Academy of Sciences of the United States of America, 101, 1195–1199.

    PubMed  CAS  Google Scholar 

  55. Reisler, E., Haik, Y., & Eisenberg, H. (1977). Bovine serum-albumin in aqueous guanidine-hydrochloride solutions—Preferential and absolute interactions and comparison with other systems. Biochemistry, 16, 197–203.

    PubMed  CAS  Google Scholar 

  56. Kirkwood, J. G., & Buff, F. P. (1951). The statistical mechanical theory of solutions. I. Journal of Chemical Physics, 19, 774–777.

    CAS  Google Scholar 

  57. Rice, S. A., & Nagasawa, M. (1961). Polyelectrolyte solutions. A theoretical introduction. London: Academic press.

    Google Scholar 

  58. O’Connell, J. P. (1971). Thermodynamic Properties of Solutions Based on Correlation Functions. Molecular Physics, 20, 27–33.

    Google Scholar 

  59. Ben-Naim, A. (1977). Inversion of the Kirkwood-Buff theory of solutions: Application to the water-ethanol system. Journal of Chemical Physics, 67, 4884–4890.

    CAS  Google Scholar 

  60. Matteoli, E., & Mansoori, G. A. (1990). Fluctuation theory of mixtures. New York: Taylor & Francis.

    Google Scholar 

  61. Newman, K. E. (1994). Kirkwood–Buff solution theory—Derivation and applications. Chemical Society Reviews, 23, 31–40.

    CAS  Google Scholar 

  62. Ben-Naim, A. (1975). Solute and solvent effects on chemical-equilibria. Journal of Chemical Physics, 63, 2064–2073.

    CAS  Google Scholar 

  63. Ben-Naim, A. (2006). Molecular theory of solutions. New York: Oxford University Press.

  64. Smith, P. E. (2006). Equilibrium dialysis data and the relationships between preferential interaction parameters for biological systems in terms of Kirkwood–Buff integrals. Journal of Physical Chemistry B, 110, 2862–2868.

    CAS  Google Scholar 

  65. Smith, P. E. (2006). Chemical potential derivatives and preferential interaction parameters in biological systems from Kirkwood–Buff theory. Biophysical Journal, 91, 849–856.

    PubMed  CAS  Google Scholar 

  66. Matteoli, E., & Lepori, L. (1984). Solute solute interactions in water. II. An analysis through the Kirkwood–Buff integrals for 14 organic solutes. Journal of Chemical Physics, 80, 2856–2863.

    CAS  Google Scholar 

  67. Chitra, R., & Smith, P. E. (2002). Molecular association in solution: A Kirkwood–Buff analysis of sodium chloride, ammonium sulfate, guanidinium chloride, urea, and 2,2,2-trifluoroethanol in water. Journal of Physical Chemistry B, 106, 1491–1500.

    CAS  Google Scholar 

  68. Rosgen, J., Pettitt, B. M., Perkyns, J., & Bolen, D. W. (2004). Statistical thermodynamic approach to the chemical activities in two-component solutions. Journal of Physical Chemistry B, 108, 2048–2055.

    Google Scholar 

  69. Rosgen, J., Pettitt, B. M., & Bolen, D. W. (2004). Uncovering the basis for nonideal behavior of biological molecules. Biochemistry, 43, 14472–14484.

    PubMed  Google Scholar 

  70. Rosgen, J., Pettitt, B. M., & Bolen, D. W. (2005). Protein folding, stability, and solvation structure in osmolyte solutions. Biophysical Journal, 89, 2988–2997.

    PubMed  CAS  Google Scholar 

  71. Weerasinghe, S., & Smith, P. E. (2003). Cavity formation and preferential interactions in urea solutions: Dependence on urea aggregation. Journal of Chemical Physics, 118, 5901–5910.

    CAS  Google Scholar 

  72. Friedman, H., & Ramanathan, P. S. (1970). Theory of mixed electrolyte solutions and application to a model for aqueous lithium chloride-cesium chloride. Journal of Physical Chemistry, 74, 3756–3765.

    CAS  Google Scholar 

  73. Kusalik, P. G., & Patey, G. N. (1987). The thermodynamic properties of electrolyte solutions: Some formal results. Journal of Chemical Physics, 86, 5110–5116.

    CAS  Google Scholar 

  74. Shulgin, I. L., & Ruckenstein, E. (2005). A protein molecule in an aqueous mixed solvent: Fluctuation theory outlook. Journal of Chemical Physics, 123, 054909-1–054909-9.

    Google Scholar 

  75. Schurr, J. M., Rangel, D. P., & Aragon, S. R. (2005). A contribution to the theory of preferential interaction coefficients. Biophysical Journal, 89, 2258–2276.

    PubMed  CAS  Google Scholar 

  76. Shulgin, I. L., & Ruckenstein, E. (2006). A protein molecule in a mixed solvent: The preferential binding parameter via the Kirkwood–Buff theory. Biophysical Journal, 90, 704–707.

    PubMed  CAS  Google Scholar 

  77. Schellman, J. A., (2005). Destabilization and stabilization of proteins. Quarterly Reviews of Biophysics, 38, 351–361.

    PubMed  CAS  Google Scholar 

  78. Record, M. T., & Anderson, C. F. (1995). Interpretation of preferential interaction coefficients of nonelectrolytes and of electrolyte ions in terms of A 2-domain model. Biophysical Journal, 68, 786–794.

    PubMed  CAS  Google Scholar 

  79. Anderson, C. F., & Record, M. T. (1993). Salt dependence of oligoion polyion binding—A thermodynamic description based on preferential interaction coefficients. Journal of Physical Chemistry, 97, 7116–7126.

    CAS  Google Scholar 

  80. Anderson, C. F., Courtenay, E. S., & Record, M. T. (2002). Thermodynamic expressions relating different types of preferential interaction coefficients in solutions containing two solute components. Journal of Physical Chemistry B, 106, 418–433.

    CAS  Google Scholar 

  81. Ruckenstein, E., & Shulgin, I. (2001). Effect of a third component on the interactions in a binary mixture determined from the fluctuation theory of solutions. Fluid Phase Equilibria, 180, 281–297.

    CAS  Google Scholar 

  82. Ben-Naim, A. (1988). Theory of preferential solvation of nonelectrolytes. Cell Biophysics, 12, 255–269.

    PubMed  CAS  Google Scholar 

  83. Aburi, M., & Smith, P. E. (2004). A combined simulation and Kirkwood–Buff approach to quantify cosolvent effects on the conformational preferences of leucine enkephalin. Journal of Physical Chemistry B, 108, 7382–7388.

    CAS  Google Scholar 

  84. Shimizu, S. (2004). Estimation of excess solvation numbers of water and cosolvents from preferential interaction and volumetric experiments. Journal of Chemical Physics, 120, 4989–4990.

    PubMed  CAS  Google Scholar 

  85. Royer, C. A. (2002). Revisiting volume changes in pressure-induced protein unfolding. Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1595, 201–209.

    CAS  Google Scholar 

  86. Timasheff, S. N., & Xie, G. F. (2003). Preferential interactions of urea with lysozyme and their linkage to protein denaturation. Biophysical Chemistry, 105, 421–448.

    PubMed  CAS  Google Scholar 

  87. Mazo, R. M. (2006). A fluctuation theory analysis of the salting-out effect. Journal of Physical Chemistry B, 110, 24077–24082.

    CAS  Google Scholar 

  88. Ruckenstein, E., & Shulgin, I. L. (2006). Effect of salts and organic additives on the solubility of proteins in aqueous solutions. Advances in Colloid and Interface Science, 123, 97–103.

    PubMed  Google Scholar 

  89. Zipp, A., & Kauzmann, W. (1973). Pressure denaturation of metmyoglobin. Biochemistry, 12, 4217–4228.

    PubMed  CAS  Google Scholar 

  90. Perrett, S., & Zhou, J. M. (2002). Expanding the pressure technique: Insights into protein folding from combined use of pressure and chemical denaturants. Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1595, 210–223.

    CAS  Google Scholar 

  91. Prakash, V., Loucheux, C., Scheufele, S., Gorbunoff, M. J., & Timasheff, S. N. (1981). Interactions of proteins with solvent components in 8-M urea. Archives of Biochemistry and Biophysics, 210, 455–464.

    PubMed  CAS  Google Scholar 

  92. Lee, J. C., & Timasheff, S. N. (1974). Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride. Biochemistry, 13, 257–265.

    PubMed  CAS  Google Scholar 

  93. Rosgen, J., Pettitt, B. M., & Bolen, D. W. (2007). An analysis of the molecular origin of osmolyte-dependent protein stability. Protein Science, 16, 733–743.

    PubMed  CAS  Google Scholar 

  94. Moon, Y. U., Curtis, R. A., Anderson, C. O., Blanch, H. W., & Prausnitz, J. M. (2000). Protein–protein interactions in aqueous ammonium sulfate solutions. Lysozyme and bovine serum albumin (BSA). Journal of Solution Chemistry, 29, 699–717.

    CAS  Google Scholar 

  95. Moon, Y. U., Anderson, C. O., Blanch, H. W., & Prausnitz, J. M. (2000). Osmotic pressures and second virial coefficients for aqueous saline solutions of lysozyme. Fluid Phase Equilibria, 168, 229–239.

    CAS  Google Scholar 

  96. Shimizu, S., & Matubayasi, N. (2006). Preferential hydration of proteins: A Kirkwood–Buff approach. Chemical Physics Letters, 420, 518–522.

    CAS  Google Scholar 

  97. Pjura, P. E., Paulaitis, M. E., & Lenhoff, A. M. (1995). Molecular thermodynamic properties of protein solutions from partial specific volumes. Aiche Journal, 41, 1005–1009.

    CAS  Google Scholar 

  98. Harano, Y., Imai, T., Kovalenko, A., Kinoshita, M., & Hirata, F. (2001). Theoretical study for partial molar volume of amino acids and polypeptides by the three-dimensional reference interaction site model. Journal of Chemical Physics, 114, 9506–9511.

    CAS  Google Scholar 

  99. Imai, T., Harano, Y., Kovalenko, A., & Hirata, F. (2001). Theoretical study for volume changes associated with the helix–coil transition of peptides. Biopolymers, 59, 512–519.

    PubMed  CAS  Google Scholar 

  100. Wetlaufer, D. B., Coffin, R. L., Malik, S. K., & Stoller, L. (1964). Nonpolar group participation in denaturation of proteins by urea + guanidinium salts. Model Compound Studies Journal of the American Chemical Society, 86, 508–514.

    CAS  Google Scholar 

  101. Trzesniak, D., Van Der Vegt, N. F. A., & van Gunsteren, W. F. (2004). Computer simulation studies on the solvation of aliphatic hydrocarbons in 6.9 M aqueous urea solution. Physical Chemistry Chemical Physics, 6, 697–702.

    CAS  Google Scholar 

  102. Van Der Vegt, N. F. A., & van Gunsteren, W. F. (2004). Entropic contributions in cosolvent binding to hydrophobic solutes in water. Journal of Physical Chemistry B, 108, 1056–1064.

    Google Scholar 

  103. Shimizu, S., McLaren, W. M., & Matubayasi, N. (2006). The Hofmeister series and protein–salt interactions. Journal of Chemical Physics, 124, 234905-1–234905-4.

    Google Scholar 

  104. Lee, L. L. (1997). A molecular theory of Setchenov’s salting-out principle and applications in mixed-solvent electrolyte solutions. Fluid Phase Equilibria, 131, 67–82.

    CAS  Google Scholar 

  105. Shimizu, S., & Boon, C. L. (2004). The Kirkwood–Buff theory and the effect of cosolvents on biochemical reactions. Journal of Chemical Physics, 121, 9147–9155.

    PubMed  CAS  Google Scholar 

  106. Shulgin, I. L., & Ruckenstein, E. (2007). Local composition in the vicinity of a protein molecule in an aqueous mixed solvent. Journal of Physical Chemistry B, 111, 3990–3998.

    CAS  Google Scholar 

  107. Smith, P. E. (2004). Local chemical potential equalization model for cosolvent effects on biomolecular equilibria. Journal of Physical Chemistry B, 108, 16271–16278.

    CAS  Google Scholar 

  108. Pace, C. N., Grimsley, G. R., & Scholtz, J. M. (2007). Denaturation of proteins by urea and guanidine hydrochloride. In J. Buchner & T. Kiefhaber (Eds.), Protein folding handbook (pp. 45–69). Weinheim: Wiley.

  109. Pace, C. N., & Shaw, K. L. (2000). Linear extrapolation method of analyzing solvent denaturation curves. Proteins, S4, 1–7.

    Google Scholar 

  110. Greene R. F. Jr., & Pace, C. N. (1974). Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. Journal of Biological Chemistry, 249, 5388–5393.

    PubMed  CAS  Google Scholar 

  111. Makhatadze, G. I. (1999). Thermodynamics of protein interactions with urea and guanidinium hydrochloride. Journal of Physical Chemistry B, 103, 4781–4785.

    CAS  Google Scholar 

  112. Frank, H. S., & Franks, F. (1968). Structural approach to solvent power of water for hydrocarbons—Urea as a structure breaker. Journal of Chemical Physics, 48, 4746–4757.

    CAS  Google Scholar 

  113. Muller, N. (1990). A model for the partial reversal of hydrophobic hydration by addition of a urea-like cosolvent. Journal of Physical Chemistry, 94, 3856–3859.

    CAS  Google Scholar 

  114. Alonso, D. O. V., & Dill, K. A. (1991). Solvent denaturation and stabilization of globular-proteins. Biochemistry, 30, 5974–5985.

    PubMed  CAS  Google Scholar 

  115. Poland, D. (2000). Ligand-binding distributions in biopolymers. Journal of Chemical Physics, 113, 4774–4784.

    CAS  Google Scholar 

  116. Graziano, G. (2001). On the solubility of aliphatic hydrocarbons in 7 M aqueous urea. Journal of Physical Chemistry B, 105, 2632–2637.

    CAS  Google Scholar 

  117. Graziano, G. (2002). Size and temperature dependence of hydrocarbon solubility in concentrated aqueous solutions of urea and guanidine hydrochloride. Canadian Journal of Chemistry, 80, 388–400.

    CAS  Google Scholar 

  118. Sanchez-Ruiz, J. M. (2007). Ligand effects on protein thermodynamic stability. Biophysical Chemistry, 126, 43–49.

    PubMed  CAS  Google Scholar 

  119. Myers, J. K., Pace, C. N., & Scholtz, J. M. (1995). Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Science, 4, 2138–2148.

    PubMed  CAS  Google Scholar 

  120. Courtenay, E. S., Capp, M. W., & Record, M. T. (2001). Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water-accessible surface area. Protein Science, 10, 2485–2497.

    PubMed  CAS  Google Scholar 

  121. Mcdevit, W. F., & Long, F. A. (1952). The activity coefficient of benzene in aqueous salt solutions. Journal of the American Chemical Society, 74, 1773–1777.

    CAS  Google Scholar 

  122. Robinson, D. R., & Jencks, W. P. (1965). Effect of concentrated salt solutions on activity coefficient of acetyltetraglycine ethyl ester. Journal of the American Chemical Society, 87, 2470–2479.

    PubMed  CAS  Google Scholar 

  123. Nandi, P. K., & Robinson, D. R. (1972). Effects of salts on free-energy of peptide group. Journal of the American Chemical Society, 94, 1299–1308.

    PubMed  CAS  Google Scholar 

  124. Nandi, P. K., & Robinson, D. R. (1972). Effects of salts on free-energies of nonpolar groups in model peptides. Journal of the American Chemical Society, 94, 1308–1315.

    PubMed  CAS  Google Scholar 

  125. Nozaki, Y., & Tanford, C. (1963). Solubility of amino acids and related compounds in aqueous urea solutions. Journal of Biological Chemistry, 238, 4074–4081.

    PubMed  CAS  Google Scholar 

  126. Nozaki, Y., & Tanford, C. (1970). Solubility of amino acids, diglycine, and triglycine in aqueous guanidine hydrochloride solutions. Journal of Biological Chemistry, 245, 1648–1652.

    PubMed  CAS  Google Scholar 

  127. Zou, Q., Habermann-Rottinghaus, S. M., & Murphy, K. P. (1998). Urea effects on protein stability: Hydrogen bonding and the hydrophobic effect. Proteins-Structure Function and Genetics, 31, 107–115.

    CAS  Google Scholar 

  128. Zou, Q., Bennion, B. J., Daggett, V., & Murphy, K. P. (2002). The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea. Journal of the American Chemical Society, 124, 1192–1202.

    PubMed  CAS  Google Scholar 

  129. Auton, M., & Bolen, D. W. (2004). Additive transfer free energies of the peptide backbone unit that are independent of the model compound and the choice of concentration scale. Biochemistry, 43, 1329–1342.

    PubMed  CAS  Google Scholar 

  130. Auton, M., & Bolen, D. W. (2005). Predicting the energetics of osmolyte-induced protein folding/unfolding. Proceedings of the National Academy of Sciences of the United States of America, 102, 15065–15068.

    PubMed  CAS  Google Scholar 

  131. Ahmad, F., & Bigelow, C. C. (1990). Thermodynamics of solvation of proteins in guanidine-hydrochloride. Biopolymers, 29, 1593–1598.

    CAS  Google Scholar 

  132. Avbelj, F., & Baldwin, R. L. (2006). Limited validity of group additivity for the folding energetics of the peptide group. Proteins-Structure Function and Bioinformatics, 63, 283–289.

    CAS  Google Scholar 

  133. Tiffany, M. L., & Krimm, S. (1973). Extended conformations of polypeptides and proteins in urea and guanidine hydrochloride. Biopolymers, 12, 575–587.

    CAS  Google Scholar 

  134. Aune, K. C., & Tanford, C. (1969). Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. II. Dependence on denaturant concentration at 25 degrees. Biochemistry, 8, 4586–4590.

    PubMed  CAS  Google Scholar 

  135. Makhatadze, G. I., & Privalov, P. L. (1992). Protein interactions with urea and guanidinium chloride—A calorimetric study. Journal of Molecular Biology, 226, 491–505.

    PubMed  CAS  Google Scholar 

  136. Schellman, J. A. (1994). The thermodynamics of solvent exchange. Biopolymers, 34, 1015–1026.

    PubMed  CAS  Google Scholar 

  137. Schellman, J. A., & Gassner, N. C. (1996). The enthalpy of transfer of unfolded proteins into solutions of urea and guanidinium chloride. Biophysical Chemistry, 59, 259–275.

    PubMed  CAS  Google Scholar 

  138. Schellman, J. A. (2003). Protein stability in mixed solvents: A balance of contact interaction and excluded volume. Biophysical Journal, 85, 108–125.

    PubMed  CAS  Google Scholar 

  139. Jasanoff, A., & Fersht, A. R. (1994). Quantitative determination of helical propensities from trifluoroethanol titration curves. Biochemistry, 33, 2129–2135.

    PubMed  CAS  Google Scholar 

  140. Courtenay, E. S., Capp, M. W., Saecker, R. M., & Record, M. T. (2000). Thermodynamic analysis of interactions between denaturants and protein surface exposed on unfolding: Interpretation of urea and guanidinium chloride m-values and their correlation with changes in accessible surface area (ASA) using preferential interaction coefficients and the local-bulk domain model. Proteins-Structure Function and Genetics, 72–85.

  141. Felitsky, D. J., & Record, M. T. (2004). Application of the local-bulk partitioning and competitive binding models to interpret preferential interactions of glycine betaine and urea with protein surface. Biochemistry, 43, 9276–9288.

    PubMed  CAS  Google Scholar 

  142. Kuharski, R. A., & Rossky, P. J. (1984). Solvation of hydrophobic species in aqueous urea solution—A molecular-dynamics study. Journal of the American Chemical Society, 106, 5794–5800.

    CAS  Google Scholar 

  143. Kuharski, R. A., & Rossky, P. J. (1984). Molecular-dynamics study of solvation in urea water solution. Journal of the American Chemical Society, 106, 5786–5793.

    CAS  Google Scholar 

  144. Pranata, J. (1995). Nature of denaturing agents—Monte-Carlo simulations of bimolecular complexes involving urea and N-methylacetamide in aqueous-solution. Journal of Physical Chemistry, 99, 4855–4859.

    CAS  Google Scholar 

  145. Deloof, H., Nilsson, L., & Rigler, R. (1992). Molecular-dynamics simulation of galanin in aqueous and nonaqueous solution. Journal of the American Chemical Society, 114, 4028–4035.

    CAS  Google Scholar 

  146. Ikeguchi, M., Nakamura, S., & Shimizu, K. (2001). Molecular dynamics study on hydrophobic effects in aqueous urea solutions. Journal of the American Chemical Society, 123, 677–682.

    PubMed  CAS  Google Scholar 

  147. Caballero-Herrera, A., Nordstrand, K., Berndt, K. D., & Nilsson, L. (2005). Effect of urea on peptide conformation in water: Molecular dynamics and experimental characterization. Biophysical Journal, 89, 842–857.

    PubMed  CAS  Google Scholar 

  148. Mountain, R. D., & Thirumalai, D. (2003). Molecular dynamics simulations of end-to-end contact formation in hydrocarbon chains in water and aqueous urea solution. Journal of the American Chemical Society, 125, 1950–1957.

    PubMed  CAS  Google Scholar 

  149. Tobi, D., Elber, R., & Thirumalai, D. (2003). The dominant interaction between peptide and urea is electrostatic in nature: A molecular dynamics simulation study. Biopolymers, 68, 359–369.

    PubMed  CAS  Google Scholar 

  150. Alonso, D. O., & Daggett, V. (1995). Molecular dynamics simulations of protein unfolding and limited refolding: characterization of partially unfolded states of ubiquitin in 60% methanol and in water. Journal of Molecular Biology, 247, 501–520.

    PubMed  CAS  Google Scholar 

  151. Bennion, B. J., & Daggett, V. (2003). The molecular basis for the chemical denaturation of proteins by urea. Proceedings of the National Academy of Sciences of the United States of America, 100, 5142–5147.

    PubMed  CAS  Google Scholar 

  152. Bennion, B. J., & Daggett, V. (2004). Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: A chemical chaperone at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 101, 6433–6438.

    PubMed  CAS  Google Scholar 

  153. Tirado-Rives, J., Orozco, M., & Jorgensen, W. L. (1997). Molecular dynamics simulations of the unfolding of barnase in water and 8 M aqueous urea. Biochemistry, 36, 7313–7329.

    PubMed  CAS  Google Scholar 

  154. Caflisch, A., & Karplus, M. (1995). Acid and thermal denaturation of barnase investigated by molecular dynamics simulations. Journal of Molecular Biology, 252, 672–708.

    PubMed  CAS  Google Scholar 

  155. Caflisch, A., & Karplus, M. (1999). Structural details of urea binding to barnase: A molecular dynamics analysis. Structure with Folding & Design, 7, 477–488.

    PubMed  CAS  Google Scholar 

  156. Vanzi, F., Madan, B., & Sharp, K. (1998). Effect of the protein denaturants urea and guanidinium on water structure: A structural and thermodynamic study. Journal of the American Chemical Society, 120, 10748–10753.

    CAS  Google Scholar 

  157. Weerasinghe, S., & Pettitt, B. M. (1994). Ideal chemical potential contribution in molecular dynamics simulations of the grand canonical ensemble. Molecular Physics, 82, 897–912.

    CAS  Google Scholar 

  158. Baynes, B. M., & Trout, B. L. (2003). Proteins in mixed solvents: A molecular-level perspective. Journal of Physical Chemistry B, 107, 14058–14067.

    CAS  Google Scholar 

  159. Weerasinghe, S., & Smith, P. E. (2003). A Kirkwood–Buff derived force field for mixtures of urea and water. Journal of Physical Chemistry B, 107, 3891–3898.

    CAS  Google Scholar 

  160. Weerasinghe, S., & Smith, P. E. (2003). A Kirkwood–Buff derived force field for mixtures of acetone and water. Journal of Physical Chemistry B, 118, 10663–10670.

    CAS  Google Scholar 

  161. Weerasinghe, S., & Smith, P. E. (2003). A Kirkwood–Buff derived force field for sodium chloride in water. Journal of Chemical Physics, 119, 11342–12349.

    CAS  Google Scholar 

  162. Weerasinghe, S., & Smith, P. E. (2004). A Kirkwood–Buff derived force field for the simulation of aqueous guanidinium chloride solutions. Journal of Chemical Physics, 121, 2180–2186.

    PubMed  CAS  Google Scholar 

  163. Weerasinghe, S., & Smith, P. E. (2005). A Kirkwood–Buff derived force field for methanol and aqueous methanol solutions. Journal of Physical Chemistry B, 109, 15080–15086.

    CAS  Google Scholar 

  164. Kang, M., & Smith, P. E. (2006). A Kirkwood–Buff derived force field for amides. Journal of Computational Chemistry, 27, 1477–1485.

    PubMed  CAS  Google Scholar 

  165. Tang, K. E. S., & Bloomfield, V. A. (2002). Assessing accumulated solvent near a macromolecular solute by preferential interaction coefficients. Biophysical Journal, 82, 2876–2891.

    Article  PubMed  CAS  Google Scholar 

  166. Aburi, M., & Smith, P. E. (2002). A conformational analysis of leucine enkephalin as a function of pH. Biopolymers, 64, 177–188.

    PubMed  CAS  Google Scholar 

  167. Kang, M., & Smith, P. E. (2007). Preferential interaction parameters in biological systems by Kirkwood–Buff theory and computer simulation. Fluid Phase Equilibria, 256, 14–19.

    CAS  Google Scholar 

Download references

Acknowledgments

PES would like to thank Monte Pettitt, John Schellman, and an anonymous referee for valuable comments on the manuscript. The project described was supported by Grant Number R01GM079277 from the National Institutes of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierce, V., Kang, M., Aburi, M. et al. Recent Applications of Kirkwood–Buff Theory to Biological Systems. Cell Biochem Biophys 50, 1–22 (2008). https://doi.org/10.1007/s12013-007-9005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-9005-0

Keywords

Navigation