Skip to main content
Log in

Salidroside Ameliorates Ischemia/Reperfusion-Induced Human Cardiomyocyte Injury by Inhibiting the Circ_0097682/miR-671-5p/USP46 Pathway

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Salidroside shows an inhibitory effect on myocardial ischemia/reperfusion (I/R) injury; however, the underlying mechanism remains to be explored. The present work analyzes the mechanism that drives salidroside to ameliorate I/R-induced human cardiomyocyte injury. Human cardiomyocytes were subjected to I/R treatment to simulate a myocardial infarction cell model. Cell viability, cell proliferation, and cell apoptosis were analyzed by CCK-8 assay, EdU assay, and flow cytometry analysis, respectively. RNA expression levels of circ_0097682, miR-671-5p, and F-box and ubiquitin-specific peptidase 46 (USP46) were detected by qRT-PCR. Protein expression was measured by Western blotting assay. The levels of IL-6, IL-1β, and TNF-α in cell supernatant were detected by enzyme-linked immunosorbent assays. Salidroside treatment relieved I/R-induced inhibitory effect on AC16 cell proliferation and promoting effects on cell apoptosis, inflammation, and oxidative stress. Salidroside inhibited circ_0097682 expression in I/R-treated AC16 cells. Salidroside-mediated inhibition of I/R-induced cell injury involved the downregulation of circ_0097682 expression. In addition, circ_0097682 bound to miR-671-5p in AC16 cells, and miR-671-5p inhibitors rescued salidroside pretreatment-mediated effects in I/R-treated AC16 cells. Moreover, miR-671-5p targeted USP46 in AC16 cells, and USP46 introduction partially relieved circ_0097682 depletion or salidroside pretreatment-induced effects in I/R-treated AC16 cells. Salidroside ameliorated I/R-induced AC16 cell injury by inhibiting the circ_0097682/miR-671-5p/USP46 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. White, H. D., Thygesen, K., Alpert, J. S., & Jaffe, A. S. (2014). Clinical implications of the third universal definition of myocardial infarction. Heart, 100, 424–432.

    Article  PubMed  Google Scholar 

  2. Wang, Z. Y., Liu, X. X., & Deng, Y. F. (2022). Negative feedback of SNRK to circ-SNRK regulates cardiac function post-myocardial infarction. Cell Death and Differentiation, 29, 709–721.

    Article  PubMed  Google Scholar 

  3. Yang, H. T., Xiu, W. J., Zheng, Y. Y., Liu, F., Gao, Y., Ma, X., et al. (2019). Invasive reperfusion after 12 hours of the symptom onset remains beneficial in patients with ST-segment elevation myocardial infarction: Evidence from a meta-analysis of published data. Cardiology Journal, 26, 333–342.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen, P., Liu, J., Ruan, H., Zhang, M., Wu, P., Yimei, D., et al. (2019). Protective effects of Salidroside on cardiac function in mice with myocardial infarction. Science and Reports, 9, 18127.

    Article  CAS  Google Scholar 

  5. Yu, S., Liu, M., Gu, X., & Ding, F. (2008). Neuroprotective effects of salidroside in the PC12 cell model exposed to hypoglycemia and serum limitation. Cellular and Molecular Neurobiology, 28, 1067–1078.

    Article  CAS  PubMed  Google Scholar 

  6. Wang, H., Ding, Y., Zhou, J., Sun, X., & Wang, S. (2009). The in vitro and in vivo antiviral effects of salidroside from Rhodiola rosea L. against coxsackievirus B3. Phytomedicine, 16, 146–155.

    Article  PubMed  Google Scholar 

  7. Wu, Y. L., Piao, D. M., Han, X. H., & Nan, J. X. (2008). Protective effects of salidroside against acetaminophen-induced toxicity in mice. Biological and Pharmaceutical Bulletin, 31, 1523–1529.

    Article  CAS  PubMed  Google Scholar 

  8. Guan, S., Feng, H., Song, B., Guo, W., Xiong, Y., Huang, G., et al. (2011). Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia. International Immunopharmacology, 11, 2194–2199.

    Article  CAS  PubMed  Google Scholar 

  9. Ming, D. S., Hillhouse, B. J., Guns, E. S., Eberding, A., Xie, S., Vimalanathan, S., et al. (2005). Bioactive compounds from Rhodiola rosea (Crassulaceae). Phytotherapy Research, 19, 740–743.

    Article  CAS  PubMed  Google Scholar 

  10. Zhong, H., Xin, H., Wu, L. X., & Zhu, Y. Z. (2010). Salidroside attenuates apoptosis in ischemic cardiomyocytes: A mechanism through a mitochondria-dependent pathway. Journal of Pharmacological Sciences, 114, 399–408.

    Article  CAS  PubMed  Google Scholar 

  11. Yu, C. Y., & Kuo, H. C. (2019). The emerging roles and functions of circular RNAs and their generation. Journal of Biomedical Science, 26, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhu, G., Chang, X., Kang, Y., Zhao, X., Tang, X., Ma, C., et al. (2012). CircRNA: A novel potential strategy to treat thyroid cancer (Review). International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2021.5034

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang, F., Zhang, R., Zhang, X., Wu, Y., Li, X., Zhang, S., et al. (2018). Comprehensive analysis of circRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of atherosclerosis in rabbits. Aging (Albany NY)., 10, 2266–2283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Altesha, M. A., Ni, T., Khan, A., Liu, K., & Zheng, X. (2019). Circular RNA in cardiovascular disease. Journal of Cellular Physiology, 234, 5588–5600.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, H., Huang, S., Wei, G., Sun, Y., Li, C., Si, X., et al. (2022). CircRNA Samd4 induces cardiac repair after myocardial infarction by blocking mitochondria-derived ROS output. Molecular Therapy, 30, 3477–3498.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, X., Wang, M., Li, Q., Liu, W., Song, Q., & Jiang, H. (2022). CircRNA ACAP2 induces myocardial apoptosis after myocardial infarction by sponging miR-29. Minerva Medica, 113, 128–134.

    Article  PubMed  Google Scholar 

  17. Jin, P., Li, L. H., Shi, Y., & Hu, N. B. (2021). Salidroside inhibits apoptosis and autophagy of cardiomyocyte by regulation of circular RNA hsa_circ_0000064 in cardiac ischemia-reperfusion injury. Gene, 767, 145075.

    Article  CAS  PubMed  Google Scholar 

  18. Yin, L., Tang, Y., & Jiang, M. (2021). Research on the circular RNA bioinformatics in patients with acute myocardial infarction. Journal of Clinical Laboratory Analysis, 35, e23621.

    Article  CAS  PubMed  Google Scholar 

  19. Correia, C., Koshkin, A., Carido, M., Espinha, N., Šarić, T., Lima, P. A., et al. (2016). Effective hypothermic storage of human pluripotent stem cell-derived cardiomyocytes compatible with global distribution of cells for clinical applications and toxicology testing. Stem Cells Translational Medicine, 5, 658–669.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Correia, C., Koshkin, A., Duarte, P., Hu, D., Carido, M., Sebastião, M. J., et al. (2018). 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnology and Bioengineering., 115, 630–644.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, X., Ren, L., Chen, S., Tao, Y., Zhao, D., & Wu, C. (2022). Long non-coding RNA MIR4435-2HG/microRNA-125a-5p axis is involved in myocardial ischemic injuries. Bioengineered, 13, 10707–10720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sebastião, M. J., Serra, M., Pereira, R., Palacios, I., Gomes-Alves, P., & Alves, P. M. (2019). Human cardiac progenitor cell activation and regeneration mechanisms: Exploring a novel myocardial ischemia/reperfusion in vitro model. Stem Cell Research & Therapy, 10, 77.

    Article  Google Scholar 

  23. Sun, D., Chen, L., Lv, H., Gao, Y., Liu, X., & Zhang, X. (2020). Circ_0058124 Upregulates MAPK1 Expression to Promote Proliferation, Metastasis and Metabolic Abilities in Thyroid Cancer Through Sponging miR-940. Oncotargets and Therapy, 13, 1569–1581.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhuang, W., Yue, L., Dang, X., Chen, F., Gong, Y., Lin, X., et al. (2019). Rosenroot (Rhodiola): Potential applications in aging-related diseases. Aging & Disease, 10, 134–146.

    Article  Google Scholar 

  25. Kong, Y. H., & Xu, S. P. (2018). Salidroside prevents skin carcinogenesis induced by DMBA/TPA in a mouse model through suppression of inflammation and promotion of apoptosis. Oncology Reports, 39, 2513–2526.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, N., Huang, F., Jian, C., Qin, L., Lu, F., Wang, Y., et al. (2019). Neuroprotective effect of salidroside against central nervous system inflammation-induced cognitive deficits: A pivotal role of sirtuin 1-dependent Nrf-2/HO-1/NF-κB pathway. Phytotherapy Research, 33, 1438–1447.

    Article  CAS  PubMed  Google Scholar 

  27. Qi, Z., Qi, S., Ling, L., Lv, J., & Feng, Z. (2016). Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus. International Immunopharmacology, 35, 265–271.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, D., Sun, X., Lv, S., Sun, M., Guo, H., Zhai, Y., et al. (2019). Salidroside attenuates oxidized low-density lipoprotein-induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. International Journal of Molecular Medicine, 43, 2279–2290.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, L., Zhang, Y., Yu, F., Li, X., Gao, H., & Li, P. (2022). The circRNA-miRNA/RBP regulatory network in myocardial infarction. Frontiers in Pharmacology, 13, 941123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wen, Z. J., Xin, H., Wang, Y. C., Liu, H. W., Gao, Y. Y., & Zhang, Y. F. (2021). Emerging roles of circRNAs in the pathological process of myocardial infarction. Mol Ther Nucleic Acids., 26, 828–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boon, R., & Dimmeler, S. (2015). MicroRNAs in myocardial infarction. Nature reviews Cardiology, 12, 135–142.

    Article  CAS  PubMed  Google Scholar 

  32. Fiedler, J., & Thum, T. (2013). MicroRNAs in myocardial infarction. Arteriosclerosis, Thrombosis, and Vascular Biology., 33, 201–205.

    Article  CAS  PubMed  Google Scholar 

  33. Ghafouri-Fard, S., Askari, A., Hussen, B. M., Rasul, M. F., Hatamian, S., Taheri, M., et al. (2022). A review on the role of miR-671 in human disorders. Frontiers in Molecular Biosciences, 9, 1077968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, X., Zhu, Y., Wu, C., Liu, W., He, Y., & Yang, Q. (2021). Adipose-derived mesenchymal stem cells-derived exosomes carry MicroRNA-671 to alleviate myocardial infarction through inactivating the TGFBR2/Smad2 Axis. Inflammation, 44, 1815–1830.

    Article  CAS  PubMed  Google Scholar 

  35. Walsh, C. T., Garneau-Tsodikova, S., & Gatto, G. J., Jr. (2005). Protein posttranslational modifications: The chemistry of proteome diversifications. Angewandte Chemie (International ed. in English), 44, 7342–7372.

    Article  CAS  PubMed  Google Scholar 

  36. Imai, S., Kano, M., Nonoyama, K., & Ebihara, S. (2013). Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice. PLoS ONE, 8, e58566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123, 773–786.

    Article  CAS  PubMed  Google Scholar 

  38. Ye, X., Hang, Y., Lu, Y., Li, D., Shen, F., Guan, P., et al. (2021). CircRNA circ-NNT mediates myocardial ischemia/reperfusion injury through activating pyroptosis by sponging miR-33a-5p and regulating USP46 expression. Cell Death Discov., 7, 370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Experimental study on the effect of salidroside on diabetes rats with coronary heart disease. Hebei Provincial Department of Health Project (20130062).

Author information

Authors and Affiliations

Authors

Contributions

YY: designed and performed the research; FL, JG, JL, CJ, WX, SW, YW, and JY: analyzed the data; YY: wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jingyuan Gao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling Editor: Joseph Moore IV.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liang, F., Gao, J. et al. Salidroside Ameliorates Ischemia/Reperfusion-Induced Human Cardiomyocyte Injury by Inhibiting the Circ_0097682/miR-671-5p/USP46 Pathway. Cardiovasc Toxicol 23, 406–418 (2023). https://doi.org/10.1007/s12012-023-09808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-023-09808-3

Keywords

Navigation