Skip to main content
Log in

Cardiomyocyte-Specific COMMD1 Deletion Suppresses Ischemia-Induced Myocardial Apoptosis

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Copper metabolism MURR domain 1 (COMMD1) increases in ischemic myocardium along with suppressed contractility. Cardiomyocyte-specific deletion of COMMD1 preserved myocardial contractile function in response to the same ischemic insult. This study was undertaken to test the hypothesis that cardiomyocyte protection in COMMD1 myocardium is responsible for the functional preservation of the heart in response to ischemic insult. After ischemic insult, there were significantly more cardiomyocytes in the cardiomyocyte-specific COMMD1 deletion myocardium than that in WT controls. This preservation of cardiomyocytes was paralleled by a significant suppression of apoptosis in the COMMD1 deletion myocardium compared to controls. In searching for the mechanistic understanding of the anti-apoptotic effect of COMMD1 deletion, we found the anti-apoptotic Bcl-2 mRNA and protein expression were upregulated and the pro-apoptotic Bax mRNA and protein expression were downregulated. The critical transcription factor RelA, maintaining a high ratio between Bcl-2 and Bax for anti-apoptotic action, was suppressed by ischemia, but was rescued in the COMMD1 deletion myocardium. Because COMMD1 is critically involved in RelA ubiquitination and degradation, the data obtained here demonstrate that COMMD1 deletion leads to RelA preservation in ischemic myocardium, promoting the Bcl-2 anti-apoptotic pathway and suppressing the Bax pro-apoptotic pathway, and in combination, leading to protection of cardiomyocytes from ischemia-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Materia, S., Cater, M. A., Klomp, L. W., Mercer, J. F., & La Fontaine, S. (2012). Clusterin and COMMD1 independently regulate degradation of the mammalian copper ATPases ATP7A and ATP7B. The Journal of biological chemistry, 287, 2485–2499.

    Article  CAS  Google Scholar 

  2. Phillips-Krawczak, C. A., Singla, A., Starokadomskyy, P., Deng, Z., Osborne, D. G., Li, H., Dick, C. J., Gomez, T. S., Koenecke, M., Zhang, J. S., Dai, H., Sifuentes-Dominguez, L. F., Geng, L. N., Kaufmann, S. H., Hein, M. Y., Wallis, M., McGaughran, J., Gecz, J., Sluis, B. V., … Burstein, E. (2015). COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Molecular biology of the cell, 26, 91–103.

    Article  Google Scholar 

  3. Campbell, K. J., & Perkins, N. D. (2006). Regulation of NF-kappaB function. Biochemical Society symposium, 165–180.

  4. Thoms, H. C., Loveridge, C. J., Simpson, J., Clipson, A., Reinhardt, K., Dunlop, M. G., & Stark, L. A. (2010). Nucleolar targeting of RelA(p65) is regulated by COMMD1-dependent ubiquitination. Cancer research, 70, 139–149.

    Article  CAS  Google Scholar 

  5. Bartuzi, P., Hofker, M. H., & van de Sluis, B. (2013). Tuning NF-κB activity: a touch of COMMD proteins. Biochimica et biophysica acta, 1832, 2315–2321.

    Article  CAS  Google Scholar 

  6. van de Sluis, B., Mao, X., Zhai, Y., Groot, A. J., Vermeulen, J. F., van der Wall, E., van Diest, P. J., Hofker, M. H., Wijmenga, C., Klomp, L. W., Cho, K. R., Fearon, E. R., Vooijs, M., & Burstein, E. (2010). COMMD1 disrupts HIF-1alpha/beta dimerization and inhibits human tumor cell invasion. The Journal of clinical investigation, 120, 2119–2130.

    Article  Google Scholar 

  7. Vonk, W. I., Wijmenga, C., Berger, R., van de Sluis, B., & Klomp, L. W. (2010). Cu, Zn superoxide dismutase maturation and activity are regulated by COMMD1. The Journal of biological chemistry, 285, 28991–29000.

    Article  CAS  Google Scholar 

  8. Li, K., Li, C., Xiao, Y., Wang, T., & James Kang, Y. (2018). The loss of copper is associated with the increase in copper metabolism MURR domain 1 in ischemic hearts of mice. Experimental biology and medicine (Maywood, N.J.), 243, 780–785.

    Article  CAS  Google Scholar 

  9. Li, C., Wang, T., Xiao, Y., Li, K., Meng, X., & James, Kang Y. (2021). COMMD1 upregulation is involved in copper efflux from ischemic hearts. Experimental biology and medicine (Maywood, N.J.), 246, 607–616.

    Article  CAS  Google Scholar 

  10. Zhang, J., Qiu, W., Ma, J., Wang, Y., Hu, Z., Long, K., Wang, X., Jin, L., Tang, Q., Tang, G., Zhu, L., Li, X., Shuai, S., & Li, M. (2019). miR-27a-5p Attenuates Hypoxia-induced Rat Cardiomyocyte Injury by Inhibiting Atg7. International journal of molecular sciences, 20, 2418.

    Article  Google Scholar 

  11. Haunstetter, A., & Izumo, S. (2000). Toward antiapoptosis as a new treatment modality. Circulation research, 86, 371–376.

    Article  CAS  Google Scholar 

  12. Yaoita, H., Ogawa, K., Maehara, K., & Maruyama, Y. (1998). Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation, 97, 276–281.

    Article  CAS  Google Scholar 

  13. Balsam, L. B., Kofidis, T., & Robbins, R. C. (2005). Caspase-3 inhibition preserves myocardial geometry and long-term function after infarction. The Journal of surgical research, 124, 194–200.

    Article  CAS  Google Scholar 

  14. Kajstura, J., Cheng, W., Reiss, K., Clark, W. A., Sonnenblick, E. H., Krajewski, S., Reed, J. C., Olivetti, G., & Anversa, P. (1996). Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Laboratory investigation; a journal of technical methods and pathology, 74, 86–107.

    CAS  PubMed  Google Scholar 

  15. Takashi, E., & Ashraf, M. (2000). Pathologic assessment of myocardial cell necrosis and apoptosis after ischemia and reperfusion with molecular and morphological markers. Journal of molecular and cellular cardiology, 32, 209–224.

    Article  CAS  Google Scholar 

  16. Webster, K. A. (2012). Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future cardiology, 8, 863–884.

    Article  CAS  Google Scholar 

  17. Liang, H., Yang, C. X., Zhang, B., Wang, H. B., Liu, H. Z., Lai, X. H., Liao, M. J., & Zhang, T. (2015). Sevoflurane suppresses hypoxia-induced growth and metastasis of lung cancer cells via inhibiting hypoxia-inducible factor-1α. Journal of anesthesia, 29, 821–830.

    Article  Google Scholar 

  18. Schimmer, A. D., Dalili, S., Batey, R. A., & Riedl, S. J. (2006). Targeting XIAP for the treatment of malignancy. Cell death and differentiation, 13(2), 179–188.

    Article  CAS  Google Scholar 

  19. Galbán, S., & Duckett, C. S. (2010). XIAP as a ubiquitin ligase in cellular signaling. Cell death and differentiation, 17, 54–60.

    Article  Google Scholar 

  20. Jiang, L., Ning, Z., & Hong, T. (2005). The role of bc1-2 and bax as well as NF-kB on liver cancer cell apoptosis induced by resveratrol. Chinese Journal of Microecology, 17, 164–165.

    Google Scholar 

  21. Kucharczak, J., Simmons, M. J., Fan, Y., & Gélinas, C. (2003). To be, or not to be: NF-kappaB is the answer–role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene, 22, 8961–8982.

    Article  CAS  Google Scholar 

  22. Maine, G. N., Mao, X., Komarck, C. M., & Burstein, E. (2007). COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase. The EMBO journal, 26, 436–447.

    Article  CAS  Google Scholar 

  23. Geng, H., Wittwer, T., Dittrich-Breiholz, O., Kracht, M., & Schmitz, M. L. (2009). Phosphorylation of NF-kappaB p65 at Ser468 controls its COMMD1-dependent ubiquitination and target gene-specific proteasomal elimination. EMBO reports, 10, 381–386.

    Article  CAS  Google Scholar 

  24. Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S., & Baltimore, D. (1995). Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature, 376, 167–170.

    Article  CAS  Google Scholar 

  25. Panta, G. R., Kaur, S., Cavin, L. G., Cortés, M. L., Mercurio, F., Lothstein, L., Sweatman, T. W., Israel, M., & Arsura, M. (2004). ATM and the catalytic subunit of DNA-dependent protein kinase activate NF-kappaB through a common MEK/extracellular signal-regulated kinase/p90(rsk) signaling pathway in response to distinct forms of DNA damage. Molecular and cellular biology, 24, 1823–1835.

    Article  CAS  Google Scholar 

  26. Beg, A. A., & Baltimore, D. (1996). An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science (New York, N.Y.), 274, 782–784.

    Article  CAS  Google Scholar 

  27. Oikawa, M., Wu, M., Lim, S., Knight, W. E., Miller, C. L., Cai, Y., Lu, Y., Blaxall, B. C., Takeishi, Y., Abe, J., & Yan, C. (2013). Cyclic nucleotide phosphodiesterase 3A1 protects the heart against ischemia-reperfusion injury. Journal of molecular and cellular cardiology, 64, 11–19.

    Article  CAS  Google Scholar 

  28. Liu, J., Chen, C., Liu, Y., Sun, X., Ding, X., Qiu, L., Han, P., & James Kang, Y. (2018). Feature Article: Trientine selectively delivers copper to the heart and suppresses pressure overload-induced cardiac hypertrophy in rats. Experimental biology and medicine (Maywood, N.J.), 243, 1141–1152.

    Article  Google Scholar 

  29. Zhang, J., Yu, L., Xu, Y., Liu, Y., Li, Z., Xue, X., Wan, S., & Wang, H. (2018). Long noncoding RNA upregulated in hypothermia treated cardiomyocytes protects against myocardial infarction through improving mitochondrial function. International journal of cardiology, 266, 213–217.

    Article  Google Scholar 

  30. Zhang, J., Sheng, J., Dong, L., Xu, Y., Yu, L., Liu, Y., Huang, X., Wan, S., Lan, H. Y., & Wang, H. (2019). Cardiomyocyte-specific loss of RNA polymerase II subunit 5-mediating protein causes myocardial dysfunction and heart failure. Cardiovascular research, 115, 1617–1628.

    Article  CAS  Google Scholar 

  31. Teringova, E., & Tousek, P. (2017). Apoptosis in ischemic heart disease. Journal of translational medicine, 15, 87.

    Article  Google Scholar 

  32. Xia, P., Liu, Y., & Cheng, Z. (2016). Signaling Pathways in Cardiac Myocyte Apoptosis. BioMed research international, 2016, 9583268.

    PubMed  PubMed Central  Google Scholar 

  33. Beug, S. T., Cheung, H. H., LaCasse, E. C., & Korneluk, R. G. (2012). Modulation of immune signalling by inhibitors of apoptosis. Trends in immunology, 33, 535–545.

    Article  CAS  Google Scholar 

  34. Ahmad, F., Lal, H., Zhou, J., Vagnozzi, R. J., Yu, J. E., Shang, X., Woodgett, J. R., Gao, E., & Force, T. (2014). Cardiomyocyte-specific deletion of Gsk3α mitigates post-myocardial infarction remodeling, contractile dysfunction, and heart failure. Journal of the American College of Cardiology, 64, 696–706.

    Article  CAS  Google Scholar 

  35. Chatterjee, S., Stewart, A. S., Bish, L. T., Jayasankar, V., Kim, E. M., Pirolli, T., Burdick, J., Woo, Y. J., Gardner, T. J., & Sweeney, H. L. (2002). Viral gene transfer of the antiapoptotic factor Bcl-2 protects against chronic postischemic heart failure. Circulation, 106, I212–I217.

    PubMed  Google Scholar 

  36. Czabotar, P. E., Lessene, G., Strasser, A., & Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature reviews. Molecular cell biology, 15, 49–63.

    Article  CAS  Google Scholar 

  37. Hochhauser, E., Cheporko, Y., Yasovich, N., Pinchas, L., Offen, D., Barhum, Y., Pannet, H., Tobar, A., Vidne, B. A., & Birk, E. (2007). Bax deficiency reduces infarct size and improves long-term function after myocardial infarction. Cell biochemistry and biophysics, 47, 11–20.

    Article  CAS  Google Scholar 

  38. Astrada, S., Gomez, Y., Barrera, E., Obal, G., Pritsch, O., Pantano, S., Vallespí, M. G., & Bollati-Fogolín, M. (2016). Comparative analysis reveals amino acids critical for anticancer activity of peptide CIGB-552. Journal of peptide science : an official publication of the European Peptide Society, 22, 711–722.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Science Foundation of China (Grant Number 81230004 to YJ Kang). The authors thank Qin Sheng, Xin Song, and Qipu Feng for technical support.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the experimental design, interpretation of the results, and review of the manuscript; CL and HXP involved in the experimentation; CL performed the data analysis; YJK and CL wrote the manuscript; and YJK edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Y. James Kang.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. Author Y James Kang is a member of the Editorial Board for Cardiovascular Toxicology. The paper was handled by the other Editor and has undergone rigorous peer review process. Author Y James Kang was not involved in the journal’s review of, or decisions related to, this manuscript.

Additional information

Handling Editor: Kurt J. Varner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 53 kb)

Supplementary file2 (pdf 3044 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Peng, H. & Kang, Y.J. Cardiomyocyte-Specific COMMD1 Deletion Suppresses Ischemia-Induced Myocardial Apoptosis. Cardiovasc Toxicol 21, 572–581 (2021). https://doi.org/10.1007/s12012-021-09650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09650-5

Keywords

Navigation