Skip to main content

Advertisement

Log in

Long-Term IL-2 Incubation-Induced L-type Calcium Channels Activation in Rat Ventricle Cardiomyocytes

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The following study examined the impact of IL-2 on Ca2+ channel activity in the event of several hours’ incubation in IL-2. The right ventricle free wall for action potential measurements was isolated and perfused with Tyrode solution. The whole-cell voltage clamp experiments were performed on enzymatically isolated single cardiomyocytes. The whole-cell voltage clamp recording of Ca2+ currents was performed using the Cs+-based pipette and bath solutions. The protocol with depolarizing prepulse (− 40 mV) was used to inactivate both Na+ current and Ca2+T-type current. The L-type Ca2+ current was elicited by a series of 250 ms depolarizing square pulses with 10 mV increments. At the 15th minute of continuous recording, the peak density at 0 mV was − 3.036 ± 0.3015 pA/pF under IL-2 and − 3.008 ± 0.3452 pA/pF in control conditions. The IL-2 in moderate concentration (1 ng/mL) has no acute effects on ICa.L in rat ventricular cells. In contrast, to the lack of acute effects, the long-term incubation with IL-2 (2 h or more) produced a prominent enhancement of Ca2+L-type current. In rat, ventricular myocardium IL-2 (1 ng/mL) produced a very gradual prolongation of subendocardial APs which reached a maximal extent after 3–4 h of treatment. The patch clamp study shows an IL-2-induced ICa.L current activation, while the action potential studies on multicellular ventricular preparations suggest an IL-2-induced L-type Ca2+ channel participation in the development of AP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arai, K., Nishida, J., Hayashida, K., Hatake, K., Kitamura, T., Miyajima, A., et al. (1990). Coordinate regulation of immune and inflammatory responses by cytokines. Rinsho Byori, 38, 347–353.

    CAS  PubMed  Google Scholar 

  2. Marriott, B. J., Goldman, H. J., Keeling, J. P., Baig, K. M., Dalgleish, G. A., & McKenna, J. W. (1996). Abnormal cytokine profiles in patients with idiopathic dilated cardiomyopathy and their asymptomatic relatives. Heart, 75, 287–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matsumori, A., Yamada, T., Suzuki, H., Matoba, Y., & Sasayama, S. (1994). Increased circulating cytokines in patients with myocarditis and cardiomyopathy. British Heart Journal, 72, 561–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao, C. M., Xia, Q., Bruce, L. C., Zhang, X., Fu, C., & Chen, J. Z. (2003). Interleukin-2 increases activity of sarcoplasmic reticulum Ca2+-ATPase, but decreases its sensitivity to calcium in rat cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 306, 572–580.

    Article  CAS  PubMed  Google Scholar 

  5. Finkel, M. S., Oddis, C. V., Jacob, T. D., Watkins, S. C., Hattler, B. G., & Simmons, R. L. (1992). Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science, 257, 387–389.

    Article  CAS  PubMed  Google Scholar 

  6. Weisensee, D., Bereiter-Hahn, J., Schoeppe, W., & Löw-Friedrich, I. (1993). Effects of cytokines on the contractility of cultured cardiac myocytes. International Journal of Immunopharmacology, 15, 581–587.

    Article  CAS  PubMed  Google Scholar 

  7. Cao, C. M., Xia, Q., Chen, Y. Y., Zhang, X., & Shen, Y. L. (2002). Opioid receptor-mediated effects of interleukin-2 on the [Ca2+]i transient and contraction in isolated ventricular myocytes of the rat. Pflügers Archiv, 443, 635–642.

    Article  CAS  PubMed  Google Scholar 

  8. Cao, C. M., Xia, Q., Bruce, I. C., Zhang, X., Fu, C., & Chen, J. Z. (2003). Interleukin-2 increases activity of sarcoplasmic reticulum Ca2+-ATP-ase, but decreases its sensitivity to calcium in rat cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 306, 572–580.

    Article  CAS  PubMed  Google Scholar 

  9. Cao, C. M., Xia, Q., Tu, J., Chen, M., Wu, S., & Wong, T. M. (2004). Cardio-protection of interleukin-2 is mediated via kappa-opioid receptors. Journal of Pharmacology and Experimental Therapeutics, 309, 560–567.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, W. M., & Wong, T. M. (1998). Suppression of cAMP by phosphoinositol/Ca2+ pathway in the cardiac kappa-opioid receptor. American Journal of Physiology, 274, 82–87.

    Article  Google Scholar 

  11. Isenberg, G., & Klockner, U. (1982). Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium”. Pflügers Archiv, 395, 6–18.

    Article  CAS  PubMed  Google Scholar 

  12. Hove-Madsen, L., & Bers, D. M. (1993). Sarcoplasmic reticulum Ca2+ uptake and thapsigargin sensitivity in permeabilized rabbit and rat ventricular myocytes. Circulation Research, 73, 820–828.

    Article  CAS  PubMed  Google Scholar 

  13. Brinkmeier, H., Kaspar, A., Wietholter, H., & Rudel, R. (1992). Interleukin-2 inhibits sodium currents in human muscle cells. Pflügers Archiv, 420, 621–623.

    Article  CAS  PubMed  Google Scholar 

  14. Aksyonov, A., Mitrokhin, V. M., & Mladenov, M. I. (2015). Effects of interleukin-2 on bioelectric activity of rat atrial myocardium under normal conditions and during gradual stretching. Immunology Letters, 167, 23–28.

    Article  CAS  PubMed  Google Scholar 

  15. Kazanski, V., Mitrokhin, V., Mladenov, M., & Kamkin, A. (2017). Cytokine effects on mechano-induced electrical activity in atrial myocardium. Immunological Investigations, 46, 22–37.

    Article  CAS  PubMed  Google Scholar 

  16. Ovchinnikov, R. S., Mitrokhin, V. M., & Mladenov, M. I. (2015). Effects of interleukin-17A on the bio-electric activity of rat atrial myocardium under normal conditions and during gradual stretching. Cytokine, 76, 561–565.

    Article  CAS  PubMed  Google Scholar 

  17. Ovchinnikov, R. S., Mitrokhin, V. M., & Mladenov, M. I. (2015). Effects of vascular endothelial growth factor β on the bioelectric activity of rat atrial myocardium under normal conditions and during gradual stretching. Journal of Biological Regulators & Homeostatic Agents, 29, 835–840.

    CAS  Google Scholar 

  18. Mitrokhin, V. M., Mladenov, M. I., & Kamkin, A. G. (2015). IL-1 provokes electrical abnormalities in rat atrial myocardium. International Immunopharmacology, 28, 780–784.

    Article  CAS  PubMed  Google Scholar 

  19. Mitrokhin, V. M., Mladenov, M. I., & Kamkin, A. G. (2015). Effects of interleukin-6 on the bio-electric activity of rat atrial tissue under normal conditions and during gradual stretching. Immunobiology, 220, 1107–1112.

    Article  CAS  PubMed  Google Scholar 

  20. Li, X. Q., Zhao, M. G., Mei, Q. B., Zhang, Y. F., Guo, W., Wang, H. F., et al. (2003). Effects of tumor necrosis factor-alpha on calcium movement in rat ventricular myocytes. Acta Pharmacologica Sinica, 12, 1224–1230.

    Google Scholar 

  21. Chik, C. L., Li, B., Ogiwara, T., Ho, A. K., & Karpinski, E. (1996). PACAP modulates L-type Ca2+ channel currents in vascular smooth muscle cells: Involvement of PKC and PKA. The FASEB Journal, 10, 1310–1317.

    Article  CAS  PubMed  Google Scholar 

  22. Trautwein, W., McDonald, T. F., & Tripathi, O. (1975). Calcium conductance and tension in mammalian ventricular muscle. Pflügers Archiv, 354, 55–74.

    Article  CAS  PubMed  Google Scholar 

  23. Antoni, H., Jacob, R., & Kaufmann, R. (1969). Mechanical response of the frog and mammalian myocardium to changes in the action potential duration by constant current pulses. Pflügers Archiv, 306, 33–57.

    Article  CAS  PubMed  Google Scholar 

  24. Edman, K. A., & Johannsson, M. (1976). The contractile state of rabbit papillary muscle in relation to stimulation frequency. The Journal of Physiology, 254, 565–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fabiato, A. (1985). Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. The Journal of General Physiology, 85, 247–289.

    Article  CAS  PubMed  Google Scholar 

  26. Ha, K. C., Kwak, Y. G., Piao, C. S., Chae, H. J., & Chae, S. W. (2007). Differential effects of superoxide radical on the action potentials in ventricular muscles, Purkinje fibers and atrial muscles in the heart of different aged rats. Archives of Pharmacal Research, 30, 1088–1095.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation.

Funding

The present study was supported by a grant from the Russian Science Foundation (Grant No. 16-14-10372).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed toward data analysis, drafting, and revising the paper and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Mitko Mladenov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Y. James Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatova, T., Mitrokhin, V., Kamkina, O. et al. Long-Term IL-2 Incubation-Induced L-type Calcium Channels Activation in Rat Ventricle Cardiomyocytes. Cardiovasc Toxicol 19, 48–55 (2019). https://doi.org/10.1007/s12012-018-9472-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-018-9472-0

Keywords

Navigation