Skip to main content
Log in

Synchronization in the Heart Rate and the Vasomotion in Rat Aorta: Effect of Arsenic Trioxide

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

An Erratum to this article was published on 05 October 2015

Abstract

Arsenic trioxide (As2O3) is used clinically in the management of acute promyelocytic leukemia, and the use of electrocardiogram (ECG) in this management is important as arsenic use may cause distortion of the electrical properties with its attendant sequel. We studied the effect of As2O3 on vasomotion in rat aortic rings using isometric tension recordings and ECG in anesthetized rats. The results showed that As2O3 (10−5 M) significantly (p < 0.01) reduced the frequency of acetylcholine (10−5 M ACh)- and KCl (10 mM)-induced vasomotion, and it also increased the relaxation time (R t) of vasomotion. This effect was restored by 10−8 M sodium nitroprusside (nitric oxide donor). ACh-induced NO release in the aorta was blunted in the presence of As2O3. The corrected QT interval (QTc) of the ECG, and time dilation (T d) of the pulse wave in the tail artery of the anesthetized rat were significantly (p < 0.05) increased in the arsenic-treated group (50 ppb As) versus control. In conclusion, data suggest that arsenic-induced reduction in vasomotion frequency of the isolated aortic rings is associated with a decreased bioavailability of NO, an increase in QTc and a decrease in the frequency of the pulse wave generated by the cardiac cycle in anesthetized rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics, 2010. CA: A Cancer Journal for Clinicians, 60, 277–300.

    Google Scholar 

  2. Warrell, R. P., de Thé, H., Wang, Z. Y., & Degos, L. (1993). Acute promyelocytic leukemia. New England Journal of Medicine, 329, 177–189.

    Article  PubMed  CAS  Google Scholar 

  3. Bennett, J. M., Catovsky, D., Daniel, M. T., Flandrin, G., Galton, D. A., Gralnick, H. R., & Sultan, C. (1976). Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. British Journal of Haematology, 33, 451–458.

    Article  PubMed  CAS  Google Scholar 

  4. Cyranoski, D. (2007). Arsenic patent keeps drug for rare cancer out of reach of many. Nature Medicine, 13, 1005.

    Article  PubMed  CAS  Google Scholar 

  5. Röllig, C., & Illmer, T. (2009). The efficacy of arsenic trioxide for the treatment of relapsed and refractory multiple myeloma: a systematic review. Cancer Treatment Reviews, 35, 425–430.

    Article  PubMed  CAS  Google Scholar 

  6. Bahlis, N. J., McCafferty-Grad, J., Jordan-McMurry, I., Neil, J., Reis, I., Kharfan-Dabaja, M., et al. (2002). Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated depletion of intracellular glutathione for the treatment of relapsed/refractory multiple myeloma. Clinical Cancer Research, 8, 3658–3668.

    PubMed  CAS  Google Scholar 

  7. de Thé, H., Le Bras, M., & Lallemand-Breitenbach, V. (2012). The cell biology of disease: Acute promyelocytic leukemia, arsenic, and PML bodies. Journal of Cell Biology, 198, 11–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Chen, X., Shan, H., Zhao, J., Hong, Y., Bai, Y., Sun, I., et al. (2010). L-type calcium current (ICa, L) and inward rectifier potassium current (IK1) are involved in QT prolongation induced by arsenic trioxide in rat. Cellular Physiology and Biochemistry, 26, 967–974.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, M. Y., Jung, B. I., Chung, S. M., Bae, O. N., Lee, J. Y., Park, J. D., et al. (2003). Arsenic-induced dysfunction in relaxation of blood vessels. Environmental Health Perspectives, 111, 513–517.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Jindal, S., Singh, M., & Balakumar, P. (2008). Effect of bis (maltolato) oxovanadium (BMOV) in uric acid and sodium arsenite-induced vascular endothelial dysfunction in rats. International Journal of Cardiology, 128, 383–391.

    Article  PubMed  Google Scholar 

  11. Westerhof, N., Lankhaar, J. W., & Westerhof, B. E. (2009). The arterial windkessel. Medical and Biological Engineering and Computing, 47, 131–141.

    Article  PubMed  Google Scholar 

  12. Wiggers, C. J., & Wegria, R. (1938). Active changes in size and distensibility of the aorta during acute hypertension. American Journal of Physiology, 123, 603–611.

    Google Scholar 

  13. Marion, S. B., & Mangel, A. W. (2014). From depolarization-dependent contractions in gastrointestinal smooth muscle to aortic pulse-synchronized contractions. Clinical and Experimental Gastroenterology, 7, 61–66.

    PubMed Central  PubMed  Google Scholar 

  14. Palacios, J., Vega, J. L., Paredes, A., & Cifuentes, F. (2013). Effect of phenylephrine and endothelium on vasomotion in rat aorta involves potassium uptake. The Journal of Physiological Sciences, 63, 103–111.

  15. Peng, H., Matchkov, V., Ivarsen, A., Aalkjaer, C., & Nilsson, H. (2001). Hypothesis for the initiation of vasomotion. Circulation Research, 88, 810–815.

    Article  PubMed  CAS  Google Scholar 

  16. Palacios, J., Nwokocha, C. R., & Cifuentes, F. (2014). Arsenic exposure decreases rhythmic contractions of vascular tone through sodium transporters and K+ channels. World Journal of Pharmacology, 3, 18–23.

    Article  Google Scholar 

  17. Hollenberg, N. K., & Sandor, T. (1984). Vasomotion of renal blood flow in essential hypertension. Oscillations in xenon transit. Hypertension, 6, 579–585.

    Article  PubMed  CAS  Google Scholar 

  18. Frielingsdorf, J., Kaufmann, P., Seiler, C., Vassalli, G., Suter, T., & Hess, O. M. (1996). Abnormal coronary vasomotion in hypertension: Role of coronary artery disease. Journal of the American College of Cardiology, 28, 935–941.

    Article  PubMed  CAS  Google Scholar 

  19. Intaglietta, M. (1991). Arteriolar vasomotion: Implications for tissue ischemia. Blood Vessels, 28(Suppl 1), 1–7.

    PubMed  Google Scholar 

  20. Mangel, A., Fahim, M., & van Breemen, C. (1982). Control of vascular contractility by the cardiac pacemaker. Science, 215, 1627–1629.

    Article  PubMed  CAS  Google Scholar 

  21. (2011). Guidelines for drinking-water quality (4th ed.). http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf. Accessed Chemical aspects.

  22. Bae, O. N., Lim, K. M., Han, J. Y., Jung, B. I., Lee, J. Y., Noh, J. Y., et al. (2008). U-shaped dose response in vasomotor tone: A mixed result of heterogenic response of multiple cells to xenobiotics. Toxicological Sciences, 103, 181–190.

    Article  PubMed  CAS  Google Scholar 

  23. González, M., Gallardo, V., Rodríguez, N., Salomón, C., Westermeier, F., Guzmán-Gutiérrez, E., et al. (2011). Insulin-stimulated l-arginine transport requires SLC7A1 gene expression and is associated with human umbilical vein relaxation. Journal of Cellular Physiology, 226, 2916–2924.

    Article  PubMed  CAS  Google Scholar 

  24. Benites, J., Valderrama, J. A., Bettega, K., Pedrosa, R. C., Calderon, P. B., & Verrax, J. (2010). Biological evaluation of donor–acceptor aminonaphthoquinones as antitumor agents. European Journal of Medicinal Chemistry, 45, 6052–6057.

    Article  PubMed  CAS  Google Scholar 

  25. Hayes, E., Pugsley, M. K., Penz, W. P., Adaikan, G., & Walker, M. J. (1994). Relationship between QaT and RR intervals in rats, guinea pigs, rabbits, and primates. Journal of Pharmacological and Toxicological Methods, 32, 201–207.

    Article  PubMed  CAS  Google Scholar 

  26. Ficker, E., Kuryshev, Y. A., Dennis, A. T., Obejero-Paz, C., Wang, L., Hawryluk, P., et al. (2004). Mechanisms of arsenic-induced prolongation of cardiac repolarization. Molecular Pharmacology, 66, 33–44.

    Article  PubMed  CAS  Google Scholar 

  27. Dora, K. A., Ings, N. T., & Garland, C. J. (2002). K(Ca) channel blockers reveal hyperpolarization and relaxation to K+ in rat isolated mesenteric artery. American Journal of Physiology Heart and Circulatory Physiology, 283, H606–H614.

    Article  PubMed  CAS  Google Scholar 

  28. Burke, M. M., Bieger, D., & Tabrizchi, R. (2011). Agonist-induced periodic vasomotion in rat isolated pulmonary artery. Fundamental and Clinical Pharmacology, 25, 443–451.

    Article  PubMed  CAS  Google Scholar 

  29. Bieger, D., Ford, C. A., & Tabrizchi, R. (2011). Potassium-induced intermittent vasomotion in rat isolated pulmonary artery. Journal of Smooth Muscle Research, 47, 21–35.

    Article  PubMed  Google Scholar 

  30. de Souza, M., & Bouskela, E. (2013). Arteriolar diameter and spontaneous vasomotion: Importance of potassium channels and nitric oxide. Microvascular Research, 90, 121–127.

    Article  PubMed  CAS  Google Scholar 

  31. Tsou, T. C., Tsai, F. Y., Hsieh, Y. W., Li, L. A., Yeh, S. C., & Chang, L. W. (2005). Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicology and Applied Pharmacology, 208, 277–284.

    Article  PubMed  CAS  Google Scholar 

  32. Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. American Journal of Physiology, 271, C1424–C1437.

    PubMed  CAS  Google Scholar 

  33. Del Razo, L. M., Quintanilla-Vega, B., Brambila-Colombres, E., Calderon-Aranda, E. S., Manno, M., & Albores, A. (2001). Stress proteins induced by arsenic. Toxicology and Applied Pharmacology, 177, 132–148.

    Article  PubMed  CAS  Google Scholar 

  34. Bunderson, M., Coffin, J. D., & Beall, H. D. (2002). Arsenic induces peroxynitrite generation and cyclooxygenase-2 protein expression in aortic endothelial cells: Possible role in atherosclerosis. Toxicology and Applied Pharmacology, 184, 11–18.

    Article  PubMed  CAS  Google Scholar 

  35. Pi, J., Horiguchi, S., Sun, Y., Nikaido, M., Shimojo, N., Hayashi, T., et al. (2003). A potential mechanism for the impairment of nitric oxide formation caused by prolonged oral exposure to arsenate in rabbits. Free Radical Biology and Medicine, 35, 102–113.

    Article  PubMed  CAS  Google Scholar 

  36. Kumagai, Y., & Pi, J. (2004). Molecular basis for arsenic-induced alteration in nitric oxide production and oxidative stress: Implication of endothelial dysfunction. Toxicology and Applied Pharmacology, 198, 450–457.

    Article  PubMed  CAS  Google Scholar 

  37. Cifuentes, F., Bravo, J., Norambuena, M., Stegen, S., Ayavire, A., & Palacios, J. (2009). Chronic exposure to arsenic in tap water reduces acetylcholine-induced relaxation in the aorta and increases oxidative stress in female rats. International Journal of Toxicology, 28, 534–541.

    Article  PubMed  CAS  Google Scholar 

  38. Ruiz-Velasco, V., Zhong, J., Hume, J. R., & Keef, K. D. (1998). Modulation of Ca2+ channels by cyclic nucleotide cross activation of opposing protein kinases in rabbit portal vein. Circulation Research, 82, 557–565.

    Article  PubMed  CAS  Google Scholar 

  39. Gustafsson, H., & Nilsson, H. (1994). Rhythmic contractions in isolated small arteries of rat: Role of K+ channels and the Na+, K(+)-pump. Acta Physiologica Scandinavica, 150, 161–170.

    Article  PubMed  CAS  Google Scholar 

  40. Aalkjaer, C., & Nilsson, H. (2005). Vasomotion: Cellular background for the oscillator and for the synchronization of smooth muscle cells. British Journal of Pharmacology, 144, 605–616.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Julio Benites (Universidad Arturo Prat, Facultad de Ciencias de la Salud, Chile) for providing the quinone derivative (2-(4-hydroxyanilino)-1,4-naphthoquinone). We thank Dr. Mauricio Boric and Dr. Xavier Figueroa (Pontificia Universidad Católica de Chile, Facultad de Biología) for her helpful comments on the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Palacios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cifuentes, F., Palacios, J. & Nwokocha, C.R. Synchronization in the Heart Rate and the Vasomotion in Rat Aorta: Effect of Arsenic Trioxide. Cardiovasc Toxicol 16, 79–88 (2016). https://doi.org/10.1007/s12012-015-9312-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9312-4

Keywords

Navigation