Skip to main content
Log in

Carbon Monoxide Pollution Impairs Myocardial Perfusion Reserve: Implication of Coronary Endothelial Dysfunction

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Chronic exposure to simulated urban CO pollution is reported to be associated with cardiac dysfunction. Despite the potential implication of myocardial perfusion alteration in the pathophysiology of CO pollution, the underlying mechanisms remain today still unknown. Therefore, the aim of this work was to evaluate the effects of prolonged exposure to simulated urban CO pollution on the regulation of myocardial perfusion. Cardiac hemodynamics and myocardial perfusion were assessed under basal conditions and during the infusion of a β-Adrenergic agonist. The effects of CO exposure on capillary density, coronary endothelium-dependent vasodilatation, eNOS expression and eNOS uncoupling were also evaluated. Our main results were that prolonged CO exposure was associated with a blunted myocardial perfusion response to a physiological stress responsible for an altered contractile reserve. The impairment of myocardial perfusion reserve was not accounted for a reduced capillary density but rather by an alteration in coronary endothelium-dependent vasorelaxation (−45% of maximal relaxation to ACh). In addition, though chronic CO exposure did not change eNOS expression, it significantly increased eNOS uncoupling. Therefore, the present work underlines the fact that chronic CO exposure, at levels found in urban air pollution, is associated with reduced myocardial perfusion reserve. This phenomenon is explained at the coronary-vessel level by deleterious effects of CO exposure on the endothelium NO-dependent vasorelaxation via eNOS uncoupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Malindzak, G. S., Jr., Miller, R. D., & Green, H. D. (1972). Coronary vasodilation and adrenergic receptors. Archives Internationales de Pharmacodynamie et de Therapie, 195, 87–98.

    PubMed  CAS  Google Scholar 

  2. Nadel, E. R., Cafarelli, E., Roberts, M. F., & Wenger, C. B. (1979). Circulatory regulation during exercise in different ambient temperatures. Journal of Applied Physiology, 46, 430–437.

    PubMed  CAS  Google Scholar 

  3. Csonka, C., Varga, E., Kovacs, P., Ferdinandy, P., Blasig, I. E., Szilvassy, Z., et al. (1999). Heme oxygenase and cardiac function in ischemic/reperfused rat hearts. Free Radical Biology and Medicine, 27, 119–126.

    Article  PubMed  CAS  Google Scholar 

  4. Bak, I., Papp, G., Turoczi, T., Varga, E., Szendrei, L., Vecsernyes, M., et al. (2002). The role of heme oxygenase-related carbon monoxide and ventricular fibrillation in ischemic/reperfused hearts. Free Radical Biology and Medicine, 33, 639–648.

    Article  PubMed  CAS  Google Scholar 

  5. Bak, I., Szendrei, L., Turoczi, T., Papp, G., Joo, F., Das, D. K., et al. (2003). Heme oxygenase-1-related carbon monoxide production and ventricular fibrillation in isolated ischemic/reperfused mouse myocardium. The FASEB Journal, 17, 2133–2135.

    PubMed  CAS  Google Scholar 

  6. Szabo, M. E., Gallyas, E., Bak, I., Rakotovao, A., Boucher, F., de Leiris, J., et al. (2004). Heme oxygenase-1-related carbon monoxide and flavonoids in ischemic/reperfused rat retina. Investigative Ophthalmology and Visual Science, 45, 3727–3732.

    Article  PubMed  Google Scholar 

  7. Bak, I., Varadi, J., Nagy, N., Vecsernyes, M., & Tosaki, A. (2005). The role of exogenous carbon monoxide in the recovery of post-ischemic cardiac function in buffer perfused isolated rat hearts. Cellular and Molecular Biology (Noisy-le-grand), 51, 453–459.

    CAS  Google Scholar 

  8. Varadi, J., Lekli, I., Juhasz, B., Bacskay, I., Szabo, G., Gesztelyi, R., et al. (2007). Beneficial effects of carbon monoxide-releasing molecules on post-ischemic myocardial recovery. Life Science, 80, 1619–1626.

    Article  CAS  Google Scholar 

  9. Bagul, A., Hosgood, S. A., Kaushik, M., & Nicholson, M. L. (2008). Carbon monoxide protects against ischemia-reperfusion injury in an experimental model of controlled non heart beating donor kidney. Transplantation, 85, 576–581.

    Article  PubMed  CAS  Google Scholar 

  10. Fujimoto, H., Ohno, M., Ayabe, S., Kobayashi, H., Ishizaka, N., Kimura, H., et al. (2004). Carbon monoxide protects against cardiac ischemia—reperfusion injury in vivo via MAPK and Akt–eNOS pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1848–1853.

    Article  PubMed  CAS  Google Scholar 

  11. Myers, I., & Maynard, R. L. (2005). Polluted air—outdoors and indoors. Occupational Medicine (London), 55, 432–438.

    Article  CAS  Google Scholar 

  12. Bell, M. L., Peng, R. D., Dominici, F. & Samet, J. M. (2009). Emergency hospital admissions for cardiovascular diseases and ambient levels of carbon monoxide. Results for 126 United States urban counties, 1999–2005. Circulation.

  13. Stieb, D. M., Szyszkowicz, M., Rowe, B. H., & Leech, J. A. (2009). Air pollution and emergency department visits for cardiac and respiratory conditions: A multi-city time-series analysis. Environmental Health, 8, 25.

    Article  PubMed  Google Scholar 

  14. Bevan, M. A., Proctor, C. J., Baker-Rogers, J., & Warren, N. D. (1991). Exposure to carbon monoxide, respirable suspended particulates, and volatile organic compounds while commuting by bicycle. Environmental Science and Technology, 25, 779–788.

    Article  Google Scholar 

  15. Stern, F. B., Halperin, W. E., Hornung, R. W., Ringenburg, V. L., & McCammon, C. S. (1988). Heart disease mortality among bridge and tunnel officers exposed to carbon monoxide. American Journal of Epidemiology, 128, 1276–1288.

    PubMed  CAS  Google Scholar 

  16. Wright, G. R., Jewczyk, S., Onrot, J., Tomlinson, P., & Shephard, R. J. (1975). Carbon monoxide in the urban atmosphere: Hazards to the pedestrian and the street-worker. Archives of Environmental Health, 30, 123–129.

    PubMed  CAS  Google Scholar 

  17. Burnett, R. T., Cakmak, S., Brook, J. R., & Krewski, D. (1997). The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases. Environmental Health Perspectives, 105, 614–620.

    Article  PubMed  CAS  Google Scholar 

  18. Samoli, E., Touloumi, G., Schwartz, J., Anderson, H. R., Schindler, C., Forsberg, B., et al. (2007). Short-term effects of carbon monoxide on mortality: An analysis within the APHEA project. Environmental Health Perspectives, 115, 1578–1583.

    Article  PubMed  CAS  Google Scholar 

  19. Andre, L., Boissiere, J., Reboul, C., Perrier, R., Zalvidea, S., Meyer, G., et al. (2010). Carbon monoxide pollution promotes cardiac remodelling and ventricular arrhythmia in healthy rats. American Journal of Respiratory and Critical Care Medicine, 181, 587–595.

    Article  PubMed  CAS  Google Scholar 

  20. Bye, A., Sorhaug, S., Ceci, M., Hoydal, M. A., Stolen, T., Heinrich, G., et al. (2008). Carbon monoxide levels experienced by heavy smokers impair aerobic capacity and cardiac contractility and induce pathological hypertrophy. Inhal Toxicol, 20, 635–646.

    Article  PubMed  CAS  Google Scholar 

  21. Kolarova, J. D., Ayoub, I. M., & Gazmuri, R. J. (2005). Cariporide enables hemodynamically more effective chest compression by leftward shift of its flow-depth relationship. American journal of physiology: Heart and circulatory physiology, 288, H2904–H2911.

    Article  PubMed  CAS  Google Scholar 

  22. Richard, V., Kaeffer, N., Tron, C., & Thuillez, C. (1994). Ischemic preconditioning protects against coronary endothelial dysfunction induced by ischemia and reperfusion. Circulation, 89, 1254–1261.

    PubMed  CAS  Google Scholar 

  23. Grijalva, J., Hicks, S., Zhao, X., Medikayala, S., Kaminski, P. M., Wolin, M. S., et al. (2008). Exercise training enhanced myocardial endothelial nitric oxide synthase (eNOS) function in diabetic Goto-Kakizaki (GK) rats. Cardiovascular Diabetology, 7, 34.

    Article  PubMed  Google Scholar 

  24. Hittinger, L., Shannon, R. P., Kohin, S., Manders, W. T., Kelly, P., & Vatner, S. F. (1990). Exercise-induced subendocardial dysfunction in dogs with left ventricular hypertrophy. Circulation Research, 66, 329–343.

    PubMed  CAS  Google Scholar 

  25. Hittinger, L., Shen, Y. T., Patrick, T. A., Hasebe, N., Komamura, K., Ihara, T., et al. (1992). Mechanisms of subendocardial dysfunction in response to exercise in dogs with severe left ventricular hypertrophy. Circulation Research, 71, 423–434.

    PubMed  CAS  Google Scholar 

  26. Favory, R., Lancel, S., Tissier, S., Mathieu, D., Decoster, B., & Neviere, R. (2006). Myocardial dysfunction and potential cardiac hypoxia in rats induced by carbon monoxide inhalation. American Journal of Respiratory and Critical Care Medicine, 174, 320–325.

    Article  PubMed  CAS  Google Scholar 

  27. Gautier, M., Antier, D., Bonnet, P., Le Net, J. L., Hanton, G., & Eder, V. (2007). Continuous inhalation of carbon monoxide induces right ventricle ischemia and dysfunction in rats with hypoxic pulmonary hypertension. American Journal of Physiology: Heart and Circulatory Physiology, 293, H1046–H1052.

    Article  PubMed  CAS  Google Scholar 

  28. Laughlin, M. H., McAllister, R. M., Jasperse, J. L., Crader, S. E., Williams, D. A., & Huxley, V. H. (1996). Endothelium-medicated control of the coronary circulation. Exercise training-induced vascular adaptations. The American Journal of Sports Medicine, 22, 228–250.

    Article  CAS  Google Scholar 

  29. Duncker, D. J., & Bache, R. J. (2008). Regulation of coronary blood flow during exercise. Physiological Reviews, 88, 1009–1086.

    Article  PubMed  CAS  Google Scholar 

  30. Cosentino, F., Barker, J. E., Brand, M. P., Heales, S. J., Werner, E. R., Tippins, J. R., et al. (2001). Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 496–502.

    Article  PubMed  CAS  Google Scholar 

  31. Stuehr, D., Pou, S., & Rosen, G. M. (2001). Oxygen reduction by nitric-oxide synthases. Journal of Biological Chemistry, 276, 14533–14536.

    Article  PubMed  CAS  Google Scholar 

  32. Zuckerbraun, B. S., Chin, B. Y., Bilban, M., d’Avila, J. C., Rao, J., Billiar, T. R., et al. (2007). Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. The FASEB Journal, 21, 1099–1106.

    Article  PubMed  CAS  Google Scholar 

  33. Meyer, G., Andre, L., Tanguy, S., Boissiere, J., Farah, C., Lopez-Lauri, F., et al. (2010). Simulated urban carbon monoxide air pollution exacerbates rat heart ischemia-reperfusion injury. American Journal of Physiology: Heart and Circulatory Physiology, 298, H1445–H1453.

    Article  PubMed  CAS  Google Scholar 

  34. Xia, Y., Tsai, A. L., Berka, V., & Zweier, J. L. (1998). Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. Journal of Biological Chemistry, 273, 25804–25808.

    Article  PubMed  CAS  Google Scholar 

  35. Vassalli, G., & Hess, O. M. (1998). Measurement of coronary flow reserve and its role in patient care. Basic Research in Cardiology, 93, 339–353.

    Article  PubMed  CAS  Google Scholar 

  36. Bradley, A. J., & Alpert, J. S. (1991). Coronary flow reserve. American Heart Journal, 122, 1116–1128.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Reboul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, G., Boissiere, J., Tanguy, S. et al. Carbon Monoxide Pollution Impairs Myocardial Perfusion Reserve: Implication of Coronary Endothelial Dysfunction. Cardiovasc Toxicol 11, 334–340 (2011). https://doi.org/10.1007/s12012-011-9125-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-011-9125-z

Keywords

Navigation