Skip to main content
Log in

Linoleic acid metabolites act to increase contractility in isolated rat heart

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Previous in vivo studies in dogs suggest that the 9,10-monoepoxide of linoleic acid (9,10-cis-epoxyoctadecenoic acid [9,10-EOA]) has toxic cardiovascular effects that result in death at higher doses. More recent work with rabbit renal proximal tubule cells suggests that the 12,13-metabolites of linoleic acid are more toxic than the 9,10-isomers. Thus, in the current study, we tested the hypothesis that 12,13-EOA and 12,13-dihydroxyoctadecadienoic acid (12,13-DHOA) have direct adverse effects on the heart. Langendorff-perfused rat hearts were exposed to 30 μM linoleic acid, 30 μM 12,13-EOA, or 30 μM 12,13-DHOA for 60 min followed by a 30-min recovery period. As indicated by peak left intraventricular pressure and/or +dP/dtmax, all three of the agents elicited moderate increases in contractile function that peaked within 10–20 min. The effects of linoleic acid and 12,13-EOA returned to control values during the remainder of the 60-min exposure, whereas the positive inotropic response to 12,13-DHOA was maintained until washout. Sustained arrhythmias and negative inotropic actions were not observed with any of the three compounds. Subsequently, the monoepoxides were infused into conscious rats (35 mg/kg/h) while blood pressure, heart rate, and EKG were monitored for 24 h using biotelemetry techniques. The only effect observed was a slight decline in blood pressure. Thus, current data suggest that linoleic acid and its oxidative metabolites do not have direct cardiotoxic effects during acute exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dupont, J., White, P.J., Carpenter, M.P., et al. (1990). Food uses and health effects of corn oil. J. Am. Coll. Nutr. 9(5): 438–470.

    PubMed  CAS  Google Scholar 

  2. Moran, J.H., Weise, R., Schnellmann, R.G., et al. (1997). Cytotoxicity of linoleic acid diols to renal proximal tubular cells. Toxicol. Appl. Pharmacol. 146(1):53–59.

    Article  PubMed  CAS  Google Scholar 

  3. Moran, J.H., Mitchell, L.A., Bradbury, J.A., et al. (2000). Analysis of the cytotoxic properties of linoleic acid metabolites produced by renal and hepatic P450s. Toxicol. Appl. Pharmacol. 168:269–279.

    Article  CAS  Google Scholar 

  4. Moghaddam, M.F., Grant, D.F., Cheek, J. M., et al. (1997). Bioactivation of leukotoxins to their diols by epoxide hydrolase. Nat. Med. 3:562–566.

    Article  PubMed  CAS  Google Scholar 

  5. Greene, J.F., Newman, J.W., Williamson, K.C., et al. (2000). Toxicity of epoxy fatty acids and related compounds to cells expressing human soluble epoxide hydrolase. Chem. Res. Toxicol. 13(4):217–226.

    Article  PubMed  CAS  Google Scholar 

  6. Damron, D.S. and Bond, M. (1993). Modulation of Ca2+ cycling in cardiac myocytes by arachidonic acid. Circ. Res. 72(2):376–386.

    PubMed  CAS  Google Scholar 

  7. Mitchell, L.A., Moran, J.H., and Grant, D.F. (2002). Linoleic acid, cis-epoxyoctadecenoic acids, and dihydroxy-octadecadienoic acids are toxic to Sf-21 cells in the absence of albumin. Toxicol. Lett. 126(3):187–196.

    Article  PubMed  CAS  Google Scholar 

  8. Hoffmann, P., Mest, H.J., Krause, E.G., et al. (1988). Investigations on the mechanism of a diminished inotropic isoprenaline effect in isolated rat hearts after high linoleic acid diet. Biomed. Biochim. Acta 47(9):881–886.

    PubMed  CAS  Google Scholar 

  9. ten Hoor, F. (1980). cardiovascular effects of dietary linoleic acid. Nutr. Metab. 24(Suppl. 1):162–180.

    PubMed  Google Scholar 

  10. de Deckere, E.A. and ten Hoor, F. (1979). Effects of dietary fats on the coronary flow rate and the left ventricular function of the isolated rat heart. Nutr. Metab. 23(2):88–97.

    PubMed  Google Scholar 

  11. Sevanian, A., Mead, J.F., and Stein, R.A. (1979). Epoxides as products of lipid autoxidation in rat lungs. Lipids 14(7): 634–643.

    Article  PubMed  CAS  Google Scholar 

  12. Bylund, J., Kunz, T., Valmsen, K., et al. (1998). Cytochromes P450 with bisallylic hydroxylation activity on arachidonic and linoleic acids studied with human recombinant enzymes and with human and rat liver microsomes. J. Pharmacol. Exp. Ther. 284(1):51–60.

    PubMed  CAS  Google Scholar 

  13. Bylund, J., Ericsson, J., and Oliw, E.H. (1998). Analysis of cytochrome P450 metabolites of arachidonic and linoleic acids by liquid chromatography-mass spectrometry with ion trap MS. Anal. Biochem. 265(1):55–68.

    Article  PubMed  CAS  Google Scholar 

  14. Draper, A.J. and Hammock, B.D. (2000). Identification of CYP2C9 as a human liver microsomal linoleic acid epoxygenase. Arch. Biochem. Biophys. 376(1):199–205.

    Article  PubMed  CAS  Google Scholar 

  15. Jude, A.R., Little, J.M., Freeman, J.P., et al. (2000). Linoleic acid diols are novel substrates for human UDP-glucurono-syltransferases. Arch. Biochem. Biophys. 380(2):294–302.

    Article  PubMed  CAS  Google Scholar 

  16. Oliw, E.H., Bylund, J., and Herman, C. (1996). Bisallylic hydroxylation and epoxidation of polyunsaturated fatty acids by cytochrome P450. Lipids 31(10):1003–1021.

    Article  PubMed  CAS  Google Scholar 

  17. Ishizaki, T., Takahashi, H., Ozawa, T., et al. (1995). Leukotoxin, 9,10-epoxy-12-octadecenoate causes pulmonary vasodilation in rats. Am. J. Physiol. 268(1 Pt. 1):L123-L128.

    PubMed  CAS  Google Scholar 

  18. Reddy, P.S., Kumar, T.C., Reddy, M.N., et al. (2000). Differential formation of octadecadienoic acid and octadecatriennoic acid products in control and injured/infected potato tubers. Biochim. Biophys. Acta 148(2):294–300.

    Google Scholar 

  19. Fukushima, A., Hayakawa, M., Sugiyama, S., et al. (1988). Cardiovascular effects of leukotoxin (9,10-epoxy-12-octadecenoate) and free fatty acids in dogs. Cardiovasc. Res. 22(3):213–218.

    Article  PubMed  CAS  Google Scholar 

  20. Kim, R.S. and LaBella, F.S. (1988). The effect of linoleic and arachidonic acid derivatives on calcium transport in vesicles from cardiac sarcoplasmic reticulum. J. Mol. Cell Cardiol. 20(2):119–130.

    Article  PubMed  CAS  Google Scholar 

  21. Stimers, J.R., Dobretsov, M., Hastings, S.L., et al. (1999). Effects of linoleic acid metabolites on electrical activity in adult rat ventricular myocytes. Biochim. Biophys. Acta 1438:359–368.

    PubMed  CAS  Google Scholar 

  22. Moran, J.H., Mon, T., Hendrickson, T.L., et al. (2001). Defining mechanisms of toxicity for linoleic acid mono-epoxides and diols in Sf-21 cells. Chem. Res. Toxicol. 14(4): 431–437.

    Article  PubMed  CAS  Google Scholar 

  23. Rudolph, J., Reddy, K.L., Chiang, J.P., et al. (1997). Highly efficient epoxidation of olefins using aqueous H2O2 and catalytic methyltrioxorhenium/pyridine: pyridine-mediated ligand acceleration. J. Am. Chem. Soc. 119:6189–6190.

    Article  CAS  Google Scholar 

  24. Greene, J.F., Williamson, K.C., Newman, J.W., et al. (2000). Metabolism of monoepoxides of methyl linoleate: bioactivation and detoxification. Arch. Biochem. Biophys. 376(2):420–432.

    Article  PubMed  CAS  Google Scholar 

  25. Moran, J.H., Nowak, G., and Grant, D.F. (2001). Analysis of the toxic effects of linoleic acid, 12,13-cis-epoxyoctadecenoic acid, and 12,13-dihydroxyoctadecenoic acid in rabbit renal cortical mitochondria. Toxicol. Appl. Pharmacol. 172(2):150–161.

    Article  PubMed  CAS  Google Scholar 

  26. Xiao, Y.F., Kang, J.X., Morgan, J.P., et al. (1995). Blocking effects of polyunsaturated fatty acids on Na+ channels of neonatal rat ventricular myocytes. Proc. Natl. Acad. Sci. USA 92(24):11,000–11,004.

    CAS  Google Scholar 

  27. Kang, J.X., Xiao, Y.F., and Leaf, A. (1995). Free, long-chain, polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 92(9):3997–4001.

    Article  PubMed  CAS  Google Scholar 

  28. Kang, J.X. and Leaf, A. (1996). Protective effects of free polyunsaturated fatty acids on arrhythmias induced by lysophosphatidylcholine or palmitoylcarnitine in neonatal rat cardiac myocytes. Eur. J. Pharm. 297:97–106.

    Article  CAS  Google Scholar 

  29. Pietri, S., Bernard, M., and Cozzone, P.J. (1991). Hydrodynamic and energetic aspects of exogenous free fatty acid perfusion in the isolated rat heart during high flow anoxia and reoxygenation: a 31P magnetic resonance study. Cardiol. Res. 25:398–406.

    CAS  Google Scholar 

  30. Kang, J.X. and Leaf, A. (1994). Effects of long-chain poly-unsaturated fatty acids on the contraction of neonatal rat cardiac myocytes. Proc. Natl. Acad. Sci. USA 91(21): 9886–9890.

    Article  PubMed  CAS  Google Scholar 

  31. Huang, J.M., Xian, H., and Bacaner, M. (1992). Longchain fatty acids activate calcium channels in ventricular myocytes. Proc. Natl. Acad. Sci. USA 89(14):6452–6456.

    Article  PubMed  CAS  Google Scholar 

  32. Hoffmann, P., Mentz, P., Blass, K.E., et al. (1982). Influence of dietary linoleic acid on cardiac function and prostaglandin release and on the effects of isoprenaline in the isolated rat heart. J. Cardiovasc. Pharmacol. 4(5): 714–720.

    Article  PubMed  CAS  Google Scholar 

  33. Logan, R.L., Larking, P., and Nye, E.R. (1977). Linoleic acid and susceptibility to fatal ventricular fibrillation in rats. Atherosclerosis 27(3):265–269.

    Article  PubMed  CAS  Google Scholar 

  34. Kim, R.S., Bihler, I., and LaBella, F.S. (1985). Calcium-translocating and cardiotonic properties of oxidation products of linoleic acid. Can. J. Physiol. Pharmacol. 63(11): 1392–1397.

    PubMed  CAS  Google Scholar 

  35. Ek, B.A., Cistola, D.P., Hamilton, J.A., et al. (1997). Fatty acid binding proteins reduce 15-lipoxygenase-induced oxygenation of linoleic acid and arachidonic acid. Biochim. Biophys. Acta 1346(1):75–85.

    PubMed  CAS  Google Scholar 

  36. Kosa, T., Maruyama, T., and Otagiri, M. (1997). Species differences of serum albumins: I. drug binding sites. Pharm. Res. 14(11):1607–1612.

    Article  PubMed  CAS  Google Scholar 

  37. Kosaka, K., Suzuki, K., Hayakawa, M., et al. (1994). Leukotoxin, a linoleate epoxide: its implication in the late death of patients with extensive burns. Mol. Cell Biochem. 139(2):141–148.

    Article  PubMed  CAS  Google Scholar 

  38. Itaya, K. and Ui, M. (1965). Colorimetric determination of free fatty acids in biological fluids. J. Lipid Res. 6:16–20.

    PubMed  CAS  Google Scholar 

  39. Harris, R.L., Frenkel, R.A., Cottam, G.L., et al. (1982). Lipid mobilization and metabolism after thermal trauma. J. Trauma 22(3):194–198.

    Article  PubMed  CAS  Google Scholar 

  40. Frame, J.D. and Moiemem, N. (1998). Human albumin administration in critically ill patients. Statisticians not trained in burns care should not evaluate data. Br. Med. J. 317(7162):884–885.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Kennedy Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, L.A., Grant, D.F., Melchert, R.B. et al. Linoleic acid metabolites act to increase contractility in isolated rat heart. Cardiovasc Toxicol 2, 219–229 (2002). https://doi.org/10.1007/s12012-002-0006-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-002-0006-3

Key words

Navigation