Skip to main content

Advertisement

Log in

Resveratrol-Selenium Nanoparticles Alleviate Neuroinflammation and Neurotoxicity in a Rat Model of Alzheimer’s Disease by Regulating Sirt1/miRNA-134/GSK3β Expression

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a brain disorder associated with a gradual weakening in neurocognitive functions, neuroinflammation, and impaired signaling pathways. Resveratrol (RSV) has neuroprotective properties, but with low bioavailability, and low solubility in vivo. Selenium (Se) is an essential micronutrient for brain function. Thus, this study aimed to evaluate the role of formulated RSV-Se nanoparticles (RSV-SeNPs) on neurochemical and histopathological approaches associated with the AD model in rats induced by Aluminum chloride (AlCl3) at a dose of 100 mg/kg/day for 60 days. RSV-SeNPs supplementation attenuates the impaired oxidative markers and mitochondrial dysfunction. The ameliorative effect of RSV-SeNPs on cholinergic deficits was associated with clearance of amyloid β (Aβ). Furthermore, activation of phosphatidylinositol 3 kinase (PI3K) deactivates glycogen synthase kinase 3 beta (GSK-3β)-mediated tau hyperphosphorylation. Additionally, RSV-SeNPs downregulate signal transducer and activator of transcription (STAT3) expression as well as interleukin-1β (IL-1β) levels, therefore alleviating neuroinflammation in AD. Moreover, RSV-SeNPs upregulate the expression of Sirtuin-1 (SIRT1) and lower that of microRNA-134, consequently increasing neurite outgrowth. Eventually, the obtained results showed that nano-formulation of resveratrol with selenium maximized the therapeutic potential of RSV against Alzheimer’s disease not only by their antioxidant but also by anti-inflammatory effect improving the neurocognitive function and modulating the signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data are available in the current study.

Abbreviations

Al:

Aluminum

AD:

Alzheimer’s disease

Aβ:

Amyloid β

MSCs:

mesenchymal stem cells

SIRT:

sirtuin

AlCl3 :

aluminum chloride

MDA:

malondialdehyde

CAT:

catalase

H2O2 :

hydrogen peroxide

GSH:

glutathione

IL-1β:

interleukin-1β

ANOVA:

one-way analysis of variance

LSD:

least significant difference

SE:

standard error

STAT3:

signal transducer and activator of transcription

PI3K:

phosphatidylinositol 3 kinase

GSK3β:

glycogen synthase kinase 3 beta

MiR-134:

microRNA- 134

References

  1. Igbokwe IO, Igwenagu E, Igbokwe NA (2019) Aluminium toxicosis: a review of toxic actions and effects. Interdiscip Toxicol 12(2):45–70. https://doi.org/10.2478/intox-2019-0007

    Article  CAS  PubMed  Google Scholar 

  2. Colomina MT, Peris-Sampedro F (2017) Aluminum and Alzheimer’s disease. Adv Neurobiol 18:183–197. https://doi.org/10.1007/978-3-319-60189-2_9

    Article  PubMed  Google Scholar 

  3. Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7(3):137–152. https://doi.org/10.1038/nrneurol.2011.2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dilliott AA, Abdelhady A, Sunderland KM et al (2021) Contribution of rare variant associations to neurodegenerative disease presentation. NPJ Genom Med 6(1):80. Published 2021 Sep 28. https://doi.org/10.1038/s41525-021-00243-3

  5. Lin YT, Wu YC, Sun GC, Ho CY, Wong TY, Lin CH, Chen HH, Yeh TC, Li CJ, Tseng CJ, Cheng PW (2018) Effect of resveratrol on reactive oxygen species-induced cognitive impairment in rats with angiotensin II-induced early Alzheimer’s disease †. J Clin Med 7(10):329. https://doi.org/10.3390/jcm7100329

    Article  CAS  PubMed Central  Google Scholar 

  6. Liu L, Liu Y, Zhao J, Xing X, Zhang C, Meng H (2020) Neuroprotective effects of D-(-)-quinic acid on aluminum chloride-induced dementia in rats. Evid-Based Complement Alternat Med Volume, Article ID 5602597, 10 pages. https://doi.org/10.1155/2020/5602597

  7. ELBini-Dhouib I, Doghri R, Ellefi A, Degrach I, Srairi-Abid N, Gati A (2021) Curcumin attenuated neurotoxicity in sporadic animal model of Alzheimer’s disease. Molecules 26(10):3011. Published 2021 May 18. https://doi.org/10.3390/molecules26103011

  8. Burns J, Yokota T, Ashihar H, Lean ME, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50(11):3337–3340. https://doi.org/10.1021/jf0112973

    Article  CAS  PubMed  Google Scholar 

  9. Malaguarnera G, Pennisi M, Bertino G, Motta M, Borzì AM, Vicari E, Bella R, Drago F, Malaguarnera M (2018) Resveratrol in patients with minimal hepatic encephalopathy. Nutrients 10(3):329. https://doi.org/10.3390/nu10030329

    Article  CAS  PubMed Central  Google Scholar 

  10. Abedini E, Khodadadi E, Zeinalzadeh E et al (2021) (2021) A comprehensive study on the antimicrobial properties of resveratrol as an alternative therapy. Evid Based Complement Alternat Med 2021:8866311. https://doi.org/10.1155/2021/8866311

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang D, Li SP, Fu JS, Bai L, Guo L (2016) Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis. Int J Dev Neurosci 49:60–66. https://doi.org/10.1016/j.ijdevneu.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  12. Yang L, Wang W, Chen J, Wang N, Zheng G (2018) A comparative study of resveratrol and resveratrol-functional selenium nanoparticles: inhibiting amyloid β aggregation and reactive oxygen species formation properties. J Biomed Mater Res, Part A 106(12):3034–3041. https://doi.org/10.1002/jbm.a.36493

    Article  CAS  Google Scholar 

  13. Ferro C, Florindo HF, Hélder A (2021) Santos Selenium nanoparticles for biomedical applications: from development and characterization to therapeutics. Adv Healthcare Mater 10:2100598. https://doi.org/10.1002/adhm.202100598

    Article  CAS  Google Scholar 

  14. Dan L, Zuojia L, Ye Y, Yawen L (2015) Niua F (2015) Green synthesis of gallic acid-coated silver nanoparticles with high antimicrobial activity and low cytotoxicity to normal cells. Process Biochem 50(3):357–366. https://doi.org/10.1016/j.procbio.2015.01.002

    Article  CAS  Google Scholar 

  15. Reed L, Muench H (1938) A simple method of estimating fifty percent end points. Am J Hyg 27:493–497

    Google Scholar 

  16. Justin Thenmozhi A, William Raja TR, Manivasagam T, Janakiraman U, Essa MM (2017) Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutr Neurosci 20(6):360–368. https://doi.org/10.1080/1028415X.2016.1144846

    Article  CAS  PubMed  Google Scholar 

  17. Yoshioka T, Kawada K, Shimada T, Mori M (1979) Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am J Obstet Gynecol 135(3):372–376. https://doi.org/10.1016/0002-9378(79)90708-7

    Article  CAS  PubMed  Google Scholar 

  18. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47(2):389–394. https://doi.org/10.1016/0003-2697(72)90132-7

    Article  CAS  PubMed  Google Scholar 

  19. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  21. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. https://doi.org/10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kot FS (2019) The effect of natural geochemical background on neurological and mental health. Exposure and Health 12:569–591

    Article  Google Scholar 

  23. Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Khachaturian Snyder PJ, ZS, (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141(7):1917–1933. https://doi.org/10.1093/brain/awy132

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fang Y, Ou S, Wu T, Zhou L, Tang H, Jiang M, Xu J, Guo K (2020) Lycopene alleviates oxidative stress via the PI3K/Akt/Nrf2pathway in a cell model of Alzheimer’s disease. PeerJ 8:e9308. https://doi.org/10.7717/peerj.9308

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wen Yang, Yue Liu, Qing-Qing Xu, Yan-Fang Xian, Zhi-Xiu Lin (2020) Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3β pathway in experimental models of Alzheimer’s disease”. Oxid Med Cell Longevity vol. 2020, Article ID 4754195, 17 pages. https://doi.org/10.1155/2020/4754195

  26. Fu Z, Aucoin D, Ahmed M, Ziliox M, Van Nostrand WE, Smith SO (2014) Capping of aβ42 oligomers by small molecule inhibitors. Biochemistry 53(50):7893–7903. https://doi.org/10.1021/bi500910b

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Wuliji O, Li W, Jiang ZG, Ghanbari HA (2013) Oxidative stress and neurodegenerative disorders. Int J Mol Sci 14(12):24438–24475. https://doi.org/10.3390/ijms141224438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kazuki Y, Iwaharaa N, Hisaharaa S, Emotoc MC, Saitoa T, Suzukia H, Manabea T, Matsumuraa A, Matsushitaa T, Suzukia S, Kawamatad J, Sato-Akabae H, Fujiif HG, Shimohama S (2019) Transplantation of mesenchymal stem cells improves amyloid- pathology by modifying microglial function and suppressing oxidative stress. J Alzheimer’s Dis 72:867–884

    Article  Google Scholar 

  29. Lakshmi BV, Sudhakar M, Prakash KS (2015) Protective effect of selenium against aluminum chloride-induced Alzheimer’s disease: behavioral and biochemical alterations in rats. Biol Trace Elem Res 165(1):67–74. https://doi.org/10.1007/s12011-015-0229-3

    Article  CAS  PubMed  Google Scholar 

  30. Kwon KJ, Kim HJ, Shin CY, Han SH (2010) Melatonin potentiates the neuroprotective properties of resveratrol against beta-amyloid-induced neurodegeneration by modulating AMP-activated protein kinase pathways. J Clin Neurol 6(3):127–137. https://doi.org/10.3988/jcn.2010.6.3.127

    Article  PubMed  PubMed Central  Google Scholar 

  31. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou P, Martins N, Sharifi-Rad J (2018) Resveratrol: a double-edged sword in health benefits. Biomedicines 6(3):91. https://doi.org/10.3390/biomedicines6030091

    Article  CAS  PubMed Central  Google Scholar 

  32. Bali P, Lahiri DK, Banik A, Nehru B, Anand A (2017) Potential for stem cells therapy in Alzheimer’s disease: Do neurotrophic factors play critical role? Curr Alzheimer Res 14(2):208–220. https://doi.org/10.2174/1567205013666160314145347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramos-Rodriguez JJ, Pacheco-Herrero M, Thyssen D, Murillo-Carretero MI, Berrocoso E, Spires-Jones TL, Bacskai BJ, Garcia-Alloza M (2013) Rapid β-amyloid deposition and cognitive impairment after cholinergic denervation in APP/PS1 mice. J Neuropathol Exp Neurol 72(4):272–285. https://doi.org/10.1097/NEN.0b013e318288a8dd

    Article  CAS  PubMed  Google Scholar 

  34. Moorthi P, Premkumar P, Priyanka R, Jayachandran KS, Anusuyadevi M (2015) Pathological changes in hippocampal neuronal circuits underlie age-associated neurodegeneration and memory loss: positive clue toward SAD. Neuroscience 301:90–105. https://doi.org/10.1016/j.neuroscience.2015.05.062

    Article  CAS  PubMed  Google Scholar 

  35. Karthick C, Periyasamy S, Jayachandran KS, Anusuyadevi M (2016) Intrahippocampal administration of ibotenic acid induced cholinergic dysfunction via NR2A/NR2B expression: implications of resveratrol against Alzheimer disease pathophysiology. Front Mol Neurosci 9:28. https://doi.org/10.3389/fnmol.2016.00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sadek KM, Lebda MA, Abouzed TK, Nasr SM, Shoukry M (2017) Neuro- and nephrotoxicity of subchronic cadmium chloride exposure and the potential chemoprotective effects of selenium nanoparticles. Metab Brain Dis 32(5):1659–1673. https://doi.org/10.1007/s11011-017-0053-x

    Article  CAS  PubMed  Google Scholar 

  37. Field RH, Gossen A, Cunningham C (2012) Prior pathology in the basal forebrain cholinergic system predisposes to inflammation-induced working memory deficits: reconciling inflammatory and cholinergic hypotheses of delirium. J Neurosci 32(18):6288–6294. https://doi.org/10.1523/JNEUROSCI.4673-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kraft AD, Harry GJ (2011) Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 8(7):2980–3018. https://doi.org/10.3390/ijerph8072980

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sarlus H, Heneka MT (2017) Microglia in Alzheimer’s disease. J Clin Investig 127(9):3240–3249. https://doi.org/10.1172/JCI90606

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen S, Dong Z, Cheng M, Zhao Y, Wang M, Sai N, Wang X, Liu H, Huang G, Zhang X (2017) Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J Neuroinflammation 14(1):187. https://doi.org/10.1186/s12974-017-0963-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chu J, Lauretti E, Praticò D (2017) Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3β kinase: implications for Alzheimer’s disease. Mol Psychiatry 22(7):1002–1008. https://doi.org/10.1038/mp.2016.214

    Article  CAS  PubMed  Google Scholar 

  42. Hyun-Jung Y (2017) Seong-Ho K (2017) The role of PI3K/AKT pathway and its therapeutic possibility in Alzheimer’s disease. Hanyang Med Rev 37:18–24. https://doi.org/10.7599/hmr.2017.37.1.18

    Article  CAS  Google Scholar 

  43. Ahmed T, Javed S, Javed S, Tariq A, Šamec D, Tejada S, Nabavi SF, Braidy N, Nabavi SM (2017) Resveratrol and Alzheimer’s disease: mechanistic insights. Mol Neurobiol 54(4):2622–2635. https://doi.org/10.1007/s12035-016-9839-9

    Article  CAS  PubMed  Google Scholar 

  44. Riba A, Deres L, Sumegi B, Toth K, Szabados E, Halmosi R (2017) Cardioprotective effect of resveratrol in a postinfarction heart failure model. Oxid Med Cell Longev 2017:6819281. https://doi.org/10.1155/2017/6819281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang F, Liu J, Shi JS (2010) Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Eur J Pharmacol 636(1–3):1–7. https://doi.org/10.1016/j.ejphar.2010.03.043

    Article  CAS  PubMed  Google Scholar 

  46. Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3):337–351. https://doi.org/10.1016/j.neuron.2007.01.010

    Article  CAS  PubMed  Google Scholar 

  47. Madadi S, Schwarzenbach H, Saidijam M et al (2019) Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer’s disease. Cell Biosci 9:91. https://doi.org/10.1186/s13578-019-0354-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Porquet D, Griñán-Ferré C, Ferrer I, Camins A, Sanfeliu C, Del Valle J, Pallàs M (2014) Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimer’s Dis 42(4):1209–1220. https://doi.org/10.3233/JAD-140444

    Article  CAS  Google Scholar 

  49. Bastianetto S, Ménard C (1852) Quirion R (2015) Neuroprotective action of resveratrol. Biochem Biophys Acta 6:1195–1201. https://doi.org/10.1016/j.bbadis.2014.09.011

    Article  CAS  Google Scholar 

  50. Cao Y, Yan Z, Zhou T, Wang G (2017) SIRT1 regulates cognitive performance and ability of learning and memory in diabetic and nondiabetic models. J Diabetes Res 2017:7121827. https://doi.org/10.1155/2017/7121827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Villemagne VL, Doré V, Bourgeat P, Burnham SC, Laws S, Salvado O, Masters CL, Rowe CC (2017) Aβ-amyloid and tau imaging in dementia. Semin Nucl Med 47(1):75–88. https://doi.org/10.1053/j.semnuclmed.2016.09.006

    Article  PubMed  Google Scholar 

  52. Cho SH, Chen JA, Sayed F, Ward ME, Gao F, Nguyen TA, Krabbe G, Sohn PD, Lo I, Minami S, Devidze N, Zhou Y, Coppola G, Gan L (2015) SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. J Neurosci 35(2):807–818. https://doi.org/10.1523/JNEUROSCI.2939-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esraa S. A. Ahmed.

Ethics declarations

Ethics Approval

The experimental protocol was carried out according to the Guide for the Care and Use of Laboratory Animals (NIH no. 85–23, 1985).

Human and Animal Rights

All the ethical protocols for animal treatment were followed by the National Institutes of Health Guide for the Care and Use of Laboratory Animals and supervised by the animal facilities, National Centre for Radiation Research and Technology, Atomic Energy Authority.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abozaid, O.A.R., Sallam, M.W., El-Sonbaty, S. et al. Resveratrol-Selenium Nanoparticles Alleviate Neuroinflammation and Neurotoxicity in a Rat Model of Alzheimer’s Disease by Regulating Sirt1/miRNA-134/GSK3β Expression. Biol Trace Elem Res 200, 5104–5114 (2022). https://doi.org/10.1007/s12011-021-03073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03073-7

Keywords

Navigation