Skip to main content
Log in

Study on the Effect of Different Iodine Intake on Hippocampal Metabolism in Offspring Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iodine is an essential trace element in the human body. Severe maternal iodine deficiency during pregnancy leads to obvious intellectual disability in the offspring. The effects of iodine deficiency on brain development have been demonstrated, but there is no clear evidence of the effects of iodine excess on brain development. To clarify the effects of iodine excess on the brain development of offspring and to provide clues to the mechanisms underlying the effects of iodine deficiency and iodine excess on the brain development of offspring. In this study, animal models with different iodine intakes were constructed using potassium iodate (KIO3). The models included four experimental groups (low-iodine group one (LI, 0μg/L iodine), low-iodine group two (LII, 5μg/L iodine), high-iodine group one (HI, 3000μg/L iodine), and high-iodine group two (HII, 10000μg/L iodine)) and one control group (NI, 100μg/L iodine). There were 20 female rats in each group, and 8 offspring were chosen from each group following birth to assess metabolic alterations. The metabolites of subsets of brain hippocampal tissue were profiled by ultra-performance liquid chromatography-linked electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC–ESI-QTOFMS) and the results were subjected to multivariate data analysis. Differential substances were screened by t test (p<0.05), principal component analysis (PCA), and partial least squares analysis (PLS-DA, VIP>1). The thyroid function of the female rats in the experimental group was abnormally changed. Metabolic analysis showed that the five groups were separated which revealed significant differences in hippocampal tissue metabolism among the five groups of offspring. A total of 12 potential metabolites were identified, with the majority of them being related to amino acid and energy metabolism. These metabolites are involved in various metabolic pathways, are interrelated, and may play a function in brain development. Our study highlights changes in metabolites and metabolic pathways in the brain hippocampus of offspring rats with different iodine intakes compared to controls, revealing new insights into hippocampal metabolism in offspring rats and new relevant targets.

Highlights

• Findings aid in the understanding of the damaging mechanisms of iodine deficiency and excess.

• Both iodine deficiency and iodine excess caused metabolic disorders in the brain hippocampus of the offspring rats.

• Discovery of differential metabolites of the effects of different iodine intakes on brain development in offspring.

• Metabolic pathways affected by iodine intake include amino acid metabolism, energy metabolism, and purine metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Due to the sensitive nature of the questions asked in this study, survey respondents were assured raw data would remain confidential and would not be shared.

References

  1. Chakraborty A, Singh V, Singh K, Rajender S (2020) Excess iodine impairs spermatogenesis by inducing oxidative stress and perturbing the blood testis barrier. Reprod Toxicol 96:128–140

    Article  CAS  PubMed  Google Scholar 

  2. Liu J, Liu L, Jia Q, Zhang X, Jin X, Shen H (2019) Effects of excessive iodine intake on blood glucose, blood pressure, and blood lipids in adults. Biol Trace Elem Res 192(2):136–144

    Article  CAS  PubMed  Google Scholar 

  3. Pearce EN, Lazarus JH, Moreno-Reyes R, Zimmermann MB (2016) Consequences of iodine deficiency and excess in pregnant women: an overview of current knowns and unknowns. Am J Clin Nutr 104(suppl_3):918S-923S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cerqueira C, Knudsen N, Ovesen L, Laurberg P, Perrild H, Rasmussen LB, Jorgensen T (2011) Doubling in the use of thyroid hormone replacement therapy in Denmark: association to iodization of salt? Eur J Epidemiol 26(8):629–635

    Article  CAS  PubMed  Google Scholar 

  5. Ning P, Ren Q, Teng D, Zhang Z, Lv X, Meng S, Shi X, Lou Z, Wu C, Yang P, Zhang W, Zhou L, Luo Y, Zhuoma Z, Yang L, Teng W (2020) Current iodine nutrition status and prevalence of thyroid disorders in tibetan adults in an oxygen-deficient plateau Tibet, China: a population-based study. Thyroid 30(5):759–766

    Article  CAS  PubMed  Google Scholar 

  6. Abu BAZ, Oldewage-Theron W, Aryeetey RNO (2019) Risks of excess iodine intake in Ghana: current situation, challenges, and lessons for the future. Ann N Y Acad Sci 1446(1):117–138

    Article  PubMed  Google Scholar 

  7. Levie D, Korevaar TIM, Bath SC, Murcia M, Dineva M, Llop S, Espada M, van Herwaarden AE, de Rijke YB, Ibarluzea JM, Sunyer J, Tiemeier H, Rayman MP, Guxens M, Peeters RP (2019) Association of maternal iodine status with child IQ: a meta-analysis of individual participant data. J Clin Endocrinol Metab 104(12):5957–5967

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rivas M, Naranjo JR (2007) Thyroid hormones, learning and memory. Genes Brain Behav 6(s1):40–44

    Article  CAS  PubMed  Google Scholar 

  9. Hetzel BS (2005) Towards the global elimination of brain damage due to iodine deficiency–the role of the International Council for Control of Iodine Deficiency Disorders. Int J Epidemiol 34(4):762–764

    Article  PubMed  Google Scholar 

  10. Mulder TA, Korevaar TIM, Peeters RP, van Herwaarden AE, de Rijke YB, White T, Tiemeier H (2021) Urinary iodine concentrations in pregnant women and offspring brain morphology. Thyroid 31(6):964–972

    Article  CAS  PubMed  Google Scholar 

  11. Andersson M, Karumbunathan V, Zimmermann MB (2012) Global Iodine Status in 2011 and Trends over the Past Decade. J Nutr 142(4):744–750

    Article  CAS  PubMed  Google Scholar 

  12. Pérez-Lobato R, Ramos R, Arrebola JP, Calvente I, Ocón-Hernández O, Dávila-Arias C, Pérez-García M, Olea N, Fernández MF (2015) Thyroid status and its association with cognitive functioning in healthy boys at 10 years of age. Eur J Endocrinol 172(2):129–139

    Article  PubMed  CAS  Google Scholar 

  13. Serrano-Nascimento C, Salgueiro RB, Pantaleao T, Correa da Costa VM, Nunes MT (2017) Maternal exposure to iodine excess throughout pregnancy and lactation induces hypothyroidism in adult male rat offspring. Sci Rep 7(1):15591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen W, Man N, Shan Z, Teng W (2011) Effects of long-term exposure to iodine excess on the apoptosis of thyrocytes in Wistar rats. Exp Clin Endocrinol Diabetes 119(1):1–8

    Article  CAS  PubMed  Google Scholar 

  15. Serrano-Nascimento C, Salgueiro RB, Vitzel KF, Pantaleao T, Correa da Costa VM, Nunes MT (2017) Iodine excess exposure during pregnancy and lactation impairs maternal thyroid function in rats. Endocr Connect 6(7):510–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo Q, Wu D, Fan C, Peng S, Guan H, Shan Z, Teng W (2018) Iodine excess did not affect the global DNA methylation status and DNA methyltransferase expression in T and B lymphocytes from NOD.H-2(h4) and Kunming mice. Int Immunopharmacol 55:151–157

    Article  CAS  PubMed  Google Scholar 

  17. Geng C, Qiao Y, Guo Y, Han W, Wu B, Wang C, Zhang J, Chen D, Yang M, Jiang P (2019) Integrated metabolomics and lipidomics profiling of hippocampus reveal metabolite biomarkers in a rat model of chronic unpredictable mild stress-induced depression. Ann Transl Med 7(23):781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao J, Jung YH, Jin Y, Kang S, Jang CG, Lee J (2019) A comprehensive metabolomics investigation of hippocampus, serum, and feces affected by chronic fluoxetine treatment using the chronic unpredictable mild stress mouse model of depression. Sci Rep 9(1):7566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang H, Liu Z, Wang S, Cui D, Zhang X, Liu Y, Zhang Y (2017) UHPLC-Q-TOF/MS based plasma metabolomics reveals the metabolic perturbations by manganese exposure in rat models. Metallomics 9(2):192–203

    Article  CAS  PubMed  Google Scholar 

  20. Rosique C, Lebsir D, Benatia S, Guigon P, Caire-Maurisier F, Benderitter M, Souidi M, Martin JC (2020) Metabolomics evaluation of repeated administration of potassium iodide on adult male rats. Arch Toxicol 94(3):803–812

    Article  CAS  PubMed  Google Scholar 

  21. Zheng F, Zhou YT, Feng DD, Li PF, Tang T, Luo JK, Wang Y (2020) Metabolomics analysis of the hippocampus in a rat model of traumatic brain injury during the acute phase. Brain Behav 10(2):e01520

    Article  PubMed  Google Scholar 

  22. Yang L, Wang J, Yang J, Zhang H, Liu X, Mao D, Lu J, Gu Y, Li X, Wang H, Xu J, Tan H, Zhang H, Yu W, Tao X, Fan Y, Cai Q, Liu X, Yang X (2020) An iodine balance study to explore the recommended nutrient intake of iodine in Chinese young adults. Br J Nutr 124(11):1156–1165

    Article  CAS  PubMed  Google Scholar 

  23. Farebrother J, Zimmermann MB, Andersson M (2019) Excess iodine intake: sources, assessment, and effects on thyroid function. Ann N Y Acad Sci 1446(1):44–65

    CAS  PubMed  Google Scholar 

  24. Freire C, Ramos R, Amaya E, Fernández MF, Santiago-Fernández P, Lopez-Espinosa M-J, Arrebola J-P, Olea N (2010) Newborn TSH concentration and its association with cognitive development in healthy boys. Eur J Endocrinol 163(6):901–909

    Article  CAS  PubMed  Google Scholar 

  25. Zhang F, Chen J, Lin X, Peng S, Yu X, Shan Z, Teng W (2018) Subclinical hypothyroidism in pregnant rats impaired learning and memory of their offspring by promoting the p75(NTR) signal pathway. Endocr Connect 7(5):688–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dong J, Liu W, Wang Y, Hou Y, Xu H, Gong J, Xi Q, Chen J (2011) Developmental iodine deficiency and hypothyroidism impair spatial memory in adolescent rat hippocampus: involvement of CaMKII, calmodulin and calcineurin. Neurotox Res 19(1):81–93

    Article  CAS  PubMed  Google Scholar 

  27. Cui T, Wang W, Chen W, Pan Z, Gao S, Tan L, Pearce EN, Zimmermann MB, Shen J, Zhang W (2019) Serum iodine is correlated with iodine intake and thyroid function in school-age children from a sufficient-to-excessive iodine intake area. J Nutr 149(6):1012–1018

    Article  PubMed  Google Scholar 

  28. Li S, He M, Zhao Z (2017) Effect of excess iodine alone on serum thyroid hormone levels in female rats. China Tropical Med 17(10):963–965

    Google Scholar 

  29. Ni Y, Zhang X, Biliang C (2017) Hypothyroidism in pregnancy on offspring’s brain development. China Matern Child Health Study 28(02):216–219

    Google Scholar 

  30. Zhang L, Teng W, Liu Y, Li J, Mao J, Fan C, Wang H, Zhang H, Shan Z (2012) Effect of maternal excessive iodine intake on neurodevelopment and cognitive function in rat offspring. BMC Neurosci 13:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dudka I, Kossowska B, Senhadri H, Latajka R, Hajek J, Andrzejak R, Antonowicz-Juchniewicz J, Gancarz R (2014) Metabonomic analysis of serum of workers occupationally exposed to arsenic, cadmium and lead for biomarker research: a preliminary study. Environ Int 68:71–81

    Article  CAS  PubMed  Google Scholar 

  32. Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, Midford PE, Ong WK, Paley S, Subhraveti P, Karp PD (2020) The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res 48(D1):D445–D453

    Article  CAS  PubMed  Google Scholar 

  33. Jeter CB, Hergenroeder GW, Ward NH 3rd, Moore AN, Dash PK (2013) Human mild traumatic brain injury decreases circulating branched-chain amino acids and their metabolite levels. J Neurotrauma 30(8):671–679

    Article  PubMed  Google Scholar 

  34. Bayer SM, McMurray WC (1967) The metabolism of amino acids in developing rat brain. J Neurochem 14(7):695–706

    Article  CAS  PubMed  Google Scholar 

  35. Račkayová V, Simicic D, Donati G, Braissant O, Gruetter R, McLin VA, Cudalbu C (2021) Late post-natal neurometabolic development in healthy male rats using (1) H and (31) P magnetic resonance spectroscopy. J Neurochem 157(3):508–519

    Article  PubMed  CAS  Google Scholar 

  36. Du Y, Zheng H, Xia H, Zhao L, Hu W, Bai G, Yan Z, Gao H (2017) Early effect of amyloid beta-peptide on hippocampal and serum metabolism in rats studied by an integrated method of NMR-based metabolomics and ANOVA-simultaneous component analysis. Biomed Res Int 2017:3262495

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cui B, Wu M, She X, Liu H (2012) Impulse noise exposure in rats causes cognitive deficits and changes in hippocampal neurotransmitter signaling and tau phosphorylation. Brain Res 1427:35–43

    Article  CAS  PubMed  Google Scholar 

  38. Simantov R (1989) Glutamate neurotoxicity in culture depends on the presence of glutamine: implications for the role of glial cells in normal and pathological brain development. J Neurochem 52(6):1694–1699

    Article  CAS  PubMed  Google Scholar 

  39. Feoli AM, Siqueira I, Almeida LM, Tramontina AC, Battu C, Wofchuk ST, Gottfried C, Perry ML, Gonçalves CA (2006) Brain glutathione content and glutamate uptake are reduced in rats exposed to pre- and postnatal protein malnutrition. J Nutr 136(9):2357–2361

    Article  CAS  PubMed  Google Scholar 

  40. Kim PM, Duan X, Huang AS, Liu CY, Ming GL, Song H, Snyder SH (2010) Aspartate racemase, generating neuronal D-aspartate, regulates adult neurogenesis. Proc Natl Acad Sci USA 107(7):3175–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hashimoto A, Kumashiro S, Nishikawa T, Oka T, Takahashi K, Mito T, Takashima S, Doi N, Mizutani Y, Yamazaki T et al (1993) Embryonic development and postnatal changes in free D-aspartate and D-serine in the human prefrontal cortex. J Neurochem 61(1):348–351

    Article  CAS  PubMed  Google Scholar 

  42. Spinelli P, Brown ER, Ferrandino G, Branno M, Montarolo PG, D’Aniello E, Rastogi RK, D’Aniello B, Baccari GC, Fisher G, D’Aniello A (2006) D-aspartic acid in the nervous system of Aplysia limacina: possible role in neurotransmission. J Cell Physiol 206(3):672–681

    Article  CAS  PubMed  Google Scholar 

  43. Mo TT, Dai H, Du H, Zhang RY, Chai KP, An Y, Chen JJ, Wang JK, Chen ZJ, Chen CZ, Jiang XJ, Tang R, Wang LP, Tan Q, Tang P, Miao XY, Meng P, Zhang LB, Cheng SQ, Peng B, Tu BJ, Han TL, Xia YY, Baker PN (2019) Gas chromatography-mass spectrometry based metabolomics profile of hippocampus and cerebellum in mice after chronic arsenic exposure. Environ Toxicol 34(2):103–111

    Article  CAS  PubMed  Google Scholar 

  44. Canmu S (1993) Determination of plasma free amino acids in children with congenital brain hypoplasia. China Plan J Educ (04):230–231

  45. Harmer CJ, McTavish SF, Clark L, Goodwin GM, Cowen PJ (2001) Tyrosine depletion attenuates dopamine function in healthy volunteers. Psychopharmacology 154(1):105–111

    Article  CAS  PubMed  Google Scholar 

  46. Swarna M, Jyothy A, Usha Rani P, Reddy PP (2004) Amino acid disorders in mental retardation: a two-decade study from Andhra Pradesh. Biochem Genet 42(3–4):85–98

    Article  CAS  PubMed  Google Scholar 

  47. Sjoberg S, Eriksson M, Nordin C (1998) L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol 139(5):493–497

    Article  CAS  PubMed  Google Scholar 

  48. Rosa AP, Jacques CE, Moraes TB, Wannmacher CM, Dutra Ade M, Dutra-Filho CS (2012) Phenylpyruvic acid decreases glucose-6-phosphate dehydrogenase activity in rat brain. Cell Mol Neurobiol 32(7):1113–8

    Article  CAS  PubMed  Google Scholar 

  49. Jakkamsetti V, Marin-Valencia I, Ma Q, Good LB, Terrill T, Rajasekaran K, Pichumani K, Khemtong C, Hooshyar MA, Sundarrajan C, Patel MS, Bachoo RM, Malloy CR, Pascual JM (2019) Brain metabolism modulates neuronal excitability in a mouse model of pyruvate dehydrogenase deficiency. Sci Transl Med 11(480)

  50. Jackson EK, Kotermanski SE, Menshikova EV, Dubey RK, Jackson TC, Kochanek PM (2017) Adenosine production by brain cells. J Neurochem 141(5):676–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Junyan W, Hao L, Jinbao L, Hongmei C, Zupei C (2007) Effect of iodine excess on the expression of NSE and GFAP in the brain of offspring rats. Chinese J Comp Med (01):18–21+63

Download references

Acknowledgements

We thank the Key Laboratory of Pathogenesis and Epidemiology of Harbin Medical University(23618504)and all participants for their techniques.

Funding

This study was supported by grants from the National Natural Science Foundation of Heilongjiang Province (LH2020H018) and the National Natural Science Foundation of China (81703175). We thank the Key Laboratory of Pathogenesis and Epidemiology of Harbin Medical University (23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Institute for Iodine Deficiency, and all participants for their techniques and support.

Author information

Authors and Affiliations

Authors

Contributions

(I) L Fan, Q Sun: conception and design; (II) H Shen, L Liu: administrative support; (III) F Li, Y Chen: collection and assembly of data; (IV) L Fan, Y He: data analysis and interpretation; (V) all authors: manuscript writing; (VI) all authors: final approval of the manuscript.

Corresponding author

Correspondence to Lixiang Liu.

Ethics declarations

Ethics Approval

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Our study was involved in animals and with the approval of the medical ethics committee of Harbin Medical University.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Li Zhang and Lijun Fan should be considered joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Fan, L., Li, F. et al. Study on the Effect of Different Iodine Intake on Hippocampal Metabolism in Offspring Rats. Biol Trace Elem Res 200, 4385–4394 (2022). https://doi.org/10.1007/s12011-021-03032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-03032-2

Keywords

Navigation