Skip to main content
Log in

Activated Nrf-2 Pathway by Vitamin E to Attenuate Testicular Injuries of Rats with Sub-chronic Cadmium Exposure

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd), a heavy metal element, cumulates in the testis and can cause male reproductive toxicity. Although vitamin E (VE) as one of potential antioxidants protects the testis against toxicity of Cd, the underlying mechanism remained uncompleted clear. The aim of this study was to investigate whether the Nrf-2 pathway is involved with the protective effect of VE on testicular damages caused by sub-chronic Cd exposure. Thirty-two SD rats were divided into four groups and orally administrated with VE and/or Cd for 28 consecutive days: control group, VE group (100 mg VE/kg), Cd group (5 mg CdCl2/kg), and VE + Cd group (100 mg VE/kg + 5 mg CdCl2/kg). The results showed that 28-day exposure of Cd caused accumulation of Cd, histopathological lesions, and alternations of sperm parameters (elevated rate of abnormal sperm, decreased count of sperm, declined motility, and viability of sperm). Moreover, the rats exposed to Cd showed significant oxidative stress (increased contents of MDA and decreased levels or activities of T-AOC, GSH, CAT, SOD and GSH-Px) and inhibition of Nrf-2 signaling pathway (downregulation of Nrf-2, HO-1, NQO-1, GCLC, GCLM and GST) of the testes. In contrast, VE treatment significantly reduced the Cd accumulation, alleviated histopathological lesions and dysfunctions, activated Nrf-2 pathway, and attenuated the oxidative stress caused by Cd in the testes of rats. In conclusion, VE, through upregulating Nrf-2 pathway, could protect testis against oxidative damages induced by sub-chronic Cd exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data used to support the findings of this study are included within the article.

References

  1. Alagawany M, El-Hack MEA, Farag MR, Elnesr SS, El-Kholy MS, Saadeldin IM, Swelum AA (2018) Dietary supplementation of Yucca schidigera extract enhances productive and reproductive performances, blood profile, immune function, and antioxidant status in laying Japanese quails exposed to lead in the diet. Poult Sci 97(9):3126–3137

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen CC, Hugie CN, Kile ML, Navab-Daneshmand T (2019) Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: a review. Front Environ Sci Eng 13(3):46. https://doi.org/10.1007/s11783-019-1129-0

    Article  CAS  Google Scholar 

  3. Andráš P, Turisová I, Krnáč J, Dirner V, Voleková-Lalinská B, Buccheri G, Jeleň S (2012) Hazards of heavy metal contamination at L’ubietová Cu-Deposit (Slovakia). Procedia Environ Sci 14:3–21

    Article  Google Scholar 

  4. Beccaloni E, Vanni F, Beccaloni M, Carere M (2013) Concentrations of arsenic, cadmium, lead and zinc in homegrown vegetables and fruits: estimated intake by population in an industrialized area of Sardinia, Italy. Microchem J 107:190–195

    Article  CAS  Google Scholar 

  5. Khafaga AF, Abd El-Hack ME, Taha AE, Elnesr SS, Alagawany M (2019) The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: a review. Environ Sci Pollut Res 26:4588–4604

    Article  CAS  Google Scholar 

  6. Maret W, Moulis JM (2013) The bioinorganic chemistry of cadmium in the context of its toxicity. Met Ions Life Sci 11:1–29

    Article  CAS  PubMed  Google Scholar 

  7. Zhou T, Jia X, Chapin RE, Maronpot RR, Harris MW, Liu J, Waalkes MP, Eddy EM (2004) Cadmium at a non-toxic dose alters gene expression in mouse testes. Toxicol Lett 154(3):191–200

    Article  CAS  PubMed  Google Scholar 

  8. Ogawa Y, Itoh M, Hirai S, Suna S, Naito M, Qu N, Terayama H, Ikeda A, Miyaso H, Matsuno Y (2012) Cadmium exposure increases susceptibility to testicular autoimmunity in mice. J Appl Toxicol 33(7):652–660

    Article  PubMed  Google Scholar 

  9. Zhu M, Miao S, Zhou W, Elnesr SS, Dong X, Zou X (2021) MAPK, AKT/FoxO3a and mTOR pathways are involved in cadmium regulating the cell cycle, proliferation and apoptosis of chicken follicular granulosa cells. Ecotoxicol Environ Saf 214:112091. https://doi.org/10.1016/j.ecoenv.2021.112091

    Article  CAS  PubMed  Google Scholar 

  10. Ren YP, Shao WH, Zuo LJ (2019) Mechanism of cadmium poisoning on testicular injury in mice. Oncol Lett 18(2):1035–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Medina MF, Arrieta MC, Villafae MN, Klyver SMR, González ME (2017) Early signs of toxicity in testes and sperm of rats exposed to low cadmium doses. Toxicol Ind Health 33(7):576–587

    Article  CAS  PubMed  Google Scholar 

  12. Abdelrazek HMA, Helmy SA, Elsayed DH, Ebaid HM, Mohamed RM (2016) Ameliorating effects of green tea extract on cadmium induced reproductive injury in male Wistar rats with respect to androgen receptors and caspase-3. Reprod Biol 16(4):300–308

    Article  PubMed  Google Scholar 

  13. Pant N, Upadhyay G, Pandey S, Mathur N, Saxena DK, Srivastava SP (2003) Lead and cadmium concentration in the seminal plasma of men in the general population: correlation with sperm quality. Reprod Toxicol 17(4):447–450

    Article  CAS  PubMed  Google Scholar 

  14. Marettova E, Maretta M, Legath J (2015) Toxic effects of cadmium on testis of birds and mammals: a review. Anim Reprod Sci 155:1–10

    Article  CAS  PubMed  Google Scholar 

  15. Niki E (2014) Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med 66:3–12

    Article  CAS  PubMed  Google Scholar 

  16. Arita M, Sato Y, Arai H, Inoue K (1998) Binding of alpha-tocopherylquinone, an oxidized form of alpha-tocopherol, to glutathione-S-transferase in the liver cytosol. FEBS Lett 436(3):424–426

    Article  CAS  PubMed  Google Scholar 

  17. Boldyrev AA, Bulygina ER, Volynskaia EA, Kurella EG, Tiulina OV (1995) The effect of hydrogen peroxide and hypochlorite on brain Na K-ATPase activity. Biokhimiia 60(10):1688–1696

    CAS  PubMed  Google Scholar 

  18. Fang J, Yin H, Yang Z, Tan M, Wang F, Chen K, Zuo Z, Shu G, Cui H, Ouyang P, Guo H, Chen Z, Huang C, Geng Y, Liu W (2021) Vitamin E protects against cadmium-induced sub-chronic liver injury associated with the inhibition of oxidative stress and activation of Nrf2 pathway. Ecotoxicol Environ Saf 208:111610. https://doi.org/10.1016/j.ecoenv.2020.111610

    Article  CAS  PubMed  Google Scholar 

  19. Adi PJ, Burra SP, Vataparti AR, Matcha B (2016) Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats. Toxicol Rep 3:591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhuvaneswaridevi C, Kirankumari K (2017) Ameliorating effect of vitamin-E against cadmium (Cd) induced brain oxidative damage in albino rats. Int J Adv Res 5(7):1214–1223

    Article  Google Scholar 

  21. Amanpour P, Khodarahmi P, Salehipour M (2020) Protective effects of vitamin E on cadmium-induced apoptosis in rat testes. Naunyn Schmiedebergs Arch Pharmacol 393(3):349–358

    Article  PubMed  Google Scholar 

  22. Kanter M, Aksu B, Akpolat M, Tarladacalisir TY, Aktas C (2009) Vitamin E protects against oxidative damage caused by cadmium in the blood of rats. Eur J Gen Med 6(3):154–460

    CAS  Google Scholar 

  23. Dadgar Z, Abdali N, ElyasiIrai A, Salehian Z (2016) The consequence of vitamin E exposure on in vitro cadmium toxicity in rat bone marrow mesenchymal stem cells. Int Biol Biomed J 2(1):21–30

    CAS  Google Scholar 

  24. Duan L, Li J, Ma P, Yang X, Xu S (2017) Vitamin E antagonizes ozone-induced asthma exacerbation in Balb/c mice through the Nrf2 pathway. Food Chem Toxicol 107:47–56

    Article  CAS  PubMed  Google Scholar 

  25. Zhu Y, Li J, Wu Z, Lu Y, You H, Li R, Li B, Yang X, Duan L (2015) Acute exposure of ozone induced pulmonary injury and the protective role of vitamin E through the Nrf2 pathway in Balb/c mice. Toxicol Res 5(1):268–277

    Article  Google Scholar 

  26. Carlson BA, Tobe R, Yefremova E, Tsuji PA, Hoffmann VJ, Schweizer U, Gladyshev VN, Hatfield DL, Conrad M (2016) Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol 9:22–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma J, Jin G (2019) Epidermal growth factor protects against myocardial ischemia reperfusion injury through activating Nrf2 signaling pathway. Free Radical Res 53(3):313–323

    Article  CAS  Google Scholar 

  28. Zhai J, Li Z, Zhang H, Ma L, Li X (2020) Coptisine ameliorates renal injury in diabetic rats through the activation of Nrf2 signaling pathway. Archiv für Experimentelle Pathologie und Pharmakologie 393(1):57–65

    Article  CAS  Google Scholar 

  29. El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH (2004) Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and β-carotene. Food Chem Toxicol 42(10):1563–1571

    Article  CAS  PubMed  Google Scholar 

  30. Nazimabashir MV, Prabu SM (2014) Protective role of grape seed proanthocyanidins against cadmium induced hepatic dysfunction in rats. Toxicol Res 3(2):131–141

    Article  CAS  Google Scholar 

  31. Johnsen SG (1970) Testicular biopsy score count–a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones 1(1):2–25

    CAS  PubMed  Google Scholar 

  32. Belsey MA, Moghissi KS, Eliasson R, Paulsen CA, Gallegos AJ, Prasad MR (1980) Laboratory manual for the examination of human semen and semen-cervical mucus interaction. Press Concern, Singopore, p 58

    Google Scholar 

  33. Yu W, Xu Z, Gao Q, Xu Y, Dai Y (2020) Protective role of wogonin against cadmium induced testicular toxicity: involvement of antioxidant, anti-inflammatory and anti-apoptotic pathways. Life Sci 258:118192. https://doi.org/10.1016/j.lfs.2020.118192

    Article  CAS  PubMed  Google Scholar 

  34. Bashir N, Kalist S, Shagirtha V, Miltonprabu S (2018) The molecular and biochemical insight view of grape seed proanthocyanidins in ameliorating cadmium-induced testes-toxicity in rat model: implication of PI3K/Akt/Nrf-2signaling. Biosci Rep 39(1):1–20

    Google Scholar 

  35. Prabu M, Shagirhta K, Muthumani M (2010) The protective role of S-allylmercaptocysteine against cadmium induced changes in sperm characteristics and testicular oxidative damage in rats. J Pharm Res 3(11):2717–2721

    CAS  Google Scholar 

  36. Hossein AM, Fariba Z, Arash S, Mehdi A, Majid S, Morteza K, Abazar Y, Rafieh AM (2014) Saffron improves epididymal sperm parameters in rats exposed to cadmium. Nephrourol Mon 6(1):12125. https://doi.org/10.5812/numonthly.12125

    Article  Google Scholar 

  37. Jahan S, Khan M, Ahmed S, Ullah H (2014) Comparative analysis of antioxidants against cadmium induced reproductive toxicity in adult male rats. Syst Biol Reprod Med 60(1):28–34

    Article  CAS  PubMed  Google Scholar 

  38. Cupertino MdC, Novaes RD, Santos EC (2017) Cadmium-induced testicular damage is associated with mineral imbalance, increased antioxidant enzymes activity and protein oxidation in rats. Life Sci 175:23–30

    Article  CAS  PubMed  Google Scholar 

  39. Bonda E, Włostowski T, Krasowska A (2004) Testicular toxicity induced by dietary cadmium is associated with decreased testicular zinc and increased hepatic and renal metallothionein and zinc in the bank vole (Clethrionomys glareolus). Biometals 175(6):615–624

    Article  Google Scholar 

  40. Elnesr SS, Elwan HAM, Xu QQ, Xie C, Dong XY, Zou XT (2019) Effects of in ovo injection of sulfur-containing amino acids on heat shock protein 70, corticosterone hormone, antioxidant indices, and lipid profile of newly hatched broiler chicks exposed to heat stress during incubation. Poult Sci 98(5):2290–2298

    Article  CAS  PubMed  Google Scholar 

  41. Elwan H, Elnesr SS, Xu Q, Xie C, Dong X, Zou X (2019) Effects of in ovo methionine-cysteine injection on embryonic development, antioxidant status, igf-i and tlr4 gene expression, and jejunum histomorphometry in newly hatched broiler chicks exposed to heat stress during incubation. Animals 9(1):1–13. https://doi.org/10.3390/ani9010025

    Article  Google Scholar 

  42. Kheradmand A, Alirezaei M, Dezfoulian O (2015) Biochemical and histopathological evaluations of ghrelin effects following cadmium toxicity in the rat testis. Andrologia 47(6):634–643

    Article  CAS  PubMed  Google Scholar 

  43. Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu Z, Yang Q, Zhang C (2011) Study on antioxidant activity of proanthocyanidins from peanut skin. Adv Mater Res 197–198:1582–1586

    Article  Google Scholar 

  45. AlkhedaideAdel AZS, Sabry A (2016) Protective effect of grape seed extract against cadmium-induced testicular dysfunction. Mol Med Rep 13(4):3101–3109

    Article  CAS  Google Scholar 

  46. Klaudia J, Marian V (2011) Importance of iron chelation in free radical-induced oxidative stress and human disease. Curr Pharm Des 17(31):3460–3473

    Article  Google Scholar 

  47. Wang Y, Fang J, Leonard SS (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radical Biol Med 36(11):1434–1443

    Article  CAS  Google Scholar 

  48. Valko M, Jomova K, Rhodes CJ (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90(1):1–37

    Article  CAS  PubMed  Google Scholar 

  49. Jie L, Qian SY, Guo Q (2008) Cadmium generates reactive oxygen- and carbon-centered radical species in rats: insights from in vivo spin-trapping studies. Free Radical Biol Med 45(4):475–481

    Article  Google Scholar 

  50. Matović V, Buha A, Ðukić-Ćosić D (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140

    Article  PubMed  Google Scholar 

  51. Wang J, Zhang H, Zhang T (2015) Molecular mechanism on cadmium-induced activity changes of catalase and superoxide dismutase. Int J Biol Macromol 77:59–67

    Article  CAS  PubMed  Google Scholar 

  52. Olamudathir KF, Suru SM, Fafunso MA, Obioha UE, Faremi TY (2008) Protective roles of onion and garlic extracts on cadmium-induced changes in sperm characteristics and testicular oxidative damage in rats. Food Chem Toxicol 46(12):3604–3611

    Article  CAS  Google Scholar 

  53. Aitken RJ, Curry BJ (2011) Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal 14(3):367–381

    Article  CAS  PubMed  Google Scholar 

  54. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120

    Article  CAS  PubMed  Google Scholar 

  55. Barrett WC, DeGnore JP, King S (2015) Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38(20):6699–6705

    Article  Google Scholar 

  56. Eder K, Siebers M, Most E, Scheibe S, Weissmann N, Gessner DK (2017) An excess dietary vitamin E concentration does not influence Nrf2 signaling in the liver of rats fed either soybean oil or salmon oil. Nutr Metab 14(1):1–15

    Article  Google Scholar 

  57. Böhm V (2018) Vitamin E. Antioxidants 7(3):44

    Article  PubMed Central  Google Scholar 

  58. Lee GY, Han SN (2018) The role of vitamin E in immunity. Nutrients 10(11):1614

    Article  PubMed Central  Google Scholar 

  59. Al-Attar AM (2011) Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J Biol Sci 18(1):63–72

    Article  CAS  PubMed  Google Scholar 

  60. Fiego DP, Santoro P, Macchioni P, Mazzoni D, Piattoni F, Tassone F, De Leonibus E (2004) The effect of dietary supplementation of vitamins C and E on the α-tocopherol content of muscles, liver and kidney, on the stability of lipids, and on certain meat quality parameters of the longissimus dorsi of rabbits. Meat Sci 67(2):319–327

    Article  PubMed  Google Scholar 

  61. Mohamed D, Saber A, Omar A, Soliman A (2014) Effect of cadmium on the testes of adult albino rats and the ameliorating effect of zinc and vitamin E. Br J Sci 72(111):72–79

    Google Scholar 

  62. Shi X, Fu L (2019) Piceatannol inhibits oxidative stress through modification of Nrf2-signaling pathway in testes and attenuates spermatogenesis and steroidogenesis in rats exposed to cadmium during adulthood. Drug Des Dev Ther 13:2811–2824

    Article  CAS  Google Scholar 

  63. Taguchi K, Kensler TW (2020) Nrf2 in liver toxicology. Arch Pharmacal Res 43(3):337–349

    Article  CAS  Google Scholar 

  64. Liu Z, Xiang Y, Sun G (2013) The KCTD family of proteins: structure, function, disease relevance. Cell Biosci 3(45):1–5. https://doi.org/10.1186/2045-3701-3-45

    Article  Google Scholar 

  65. De Haan JB (2011) Nrf2 activators as attractive therapeutics for diabetic nephropathy. Diabetes 60(11):2683–2684

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47(1):89–116

    Article  CAS  PubMed  Google Scholar 

  67. Zhang M, An C, Gao Y (2013) Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol 100(1):30–47

    Article  CAS  PubMed  Google Scholar 

  68. Yang SH, Yu LH, Li L, Guo Y, Zhang Y, Long M, Li P, He JB (2018) Protective mechanism of sulforaphane on cadmium-induced sertoli cell injury in mice testis via Nrf2/ARE Signaling Pathway. Molecules 23(7):1–14. https://doi.org/10.3390/molecules23071774

    Article  CAS  Google Scholar 

  69. Yang SH, Li P, Yu LH, Li L, Long M, Liu MD, He JB (2019) Sulforaphane protect against cadmium-induced oxidative damage in mouse leydigs cells by activating Nrf2/ARE signaling pathway. Int J Mol Sci 20(3):630. https://doi.org/10.3390/ijms20030630

    Article  CAS  PubMed Central  Google Scholar 

  70. He L, Li P, Yu LH, Li L, Yang SH (2017) Protective effects of proanthocyanidins against cadmium-induced testicular injury through the modification of Nrf2-Keap1 signal path in rats. Environ Toxicol Pharmacol 57:1–8. https://doi.org/10.1016/j.etap.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  71. Nazima B, Manoharan V, Miltonprabu S (2015) Grape seed proanthocyanidins ameliorates cadmium-induced renal injury and oxidative stress in experimental rats through the up-regulation of nuclear related factor 2 and antioxidant responsive elements. Biochem Cell Biol 93(3):210–226

    Article  CAS  PubMed  Google Scholar 

  72. Goven D, Boutten A, Leçon-Malas V, Boczkowski J, Bonay M (2009) Prolonged cigarette smoke exposure decreases heme oxygenase-1 and alters Nrf2 and Bach1 expression in human macrophages: roles of the MAP kinases ERK(1/2) and JNK. FEBS Lett 583(21):3508–3518

    Article  CAS  PubMed  Google Scholar 

  73. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y-i (1997) An Nrf2/Small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236(2):313–322

    Article  CAS  PubMed  Google Scholar 

  74. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL (1999) Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274(37):26071–26078

    Article  CAS  PubMed  Google Scholar 

  75. Feng Z, Liu Z, Li X, Jia H, Sun L, Tian C, Jia L, Liu J (2010) α-Tocopherol is an effective phase II enzyme inducer: protective effects on acrolein-induced oxidative stress and mitochondrial dysfunction in human retinal pigment epithelial cells. J Nutr Biochem 21(12):1222–1231

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National key research and development project (2018YFD0501800), Sichuan Science and Technology Program (2018NZ0002, 2019YFQ0012), and Sichuan beef cattle innovation team of National modern agricultural industry technology system (SCCXTD-2020–13).

Author information

Authors and Affiliations

Authors

Contributions

Zhuo Chen, Zhicai Zuo, Kejie Chen, Zhuangzhi Yang, Fengyuan Wang, and Jing Fang designed and performed experiments, collected and analyzed data, and wrote the paper. Hengmin Cui, Hongrui Guo, Ping Ouyang, Zhengli Chen, Chao Huang, Yi Geng, Wentao Liu, and Huidan Deng performed experiments. All authors contributed discussions and interpretations.

Corresponding author

Correspondence to Jing Fang.

Ethics declarations

Ethics Approval

The experimental animals and procedures were implemented in accordance with the agreement approved by the Animal Care and the Ethics Committee of Sichuan Agricultural University (Approval No:2012–024, Chengdu, China).

Consent to Participate

Not applicable.

Consent to Publish

The authors confirm that the work described has not been published before.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zuo, Z., Chen, K. et al. Activated Nrf-2 Pathway by Vitamin E to Attenuate Testicular Injuries of Rats with Sub-chronic Cadmium Exposure. Biol Trace Elem Res 200, 1722–1735 (2022). https://doi.org/10.1007/s12011-021-02784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02784-1

Keywords

Navigation