Skip to main content

Advertisement

Log in

Alleviative Effects of Exercise on Bone Remodeling in Fluorosis Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Fluorine is widely present in nature in the form of fluoride. Prolonged high-dose fluoride exposure can cause skeletal fluorosis, resulting in osteosclerosis, osteoporosis or osteomalacia. It has been proved that exercise is one of the important factors affecting the health of the bone and promoting bone formation. To investigate the effects of exercise on bone remodeling in fluorosis mice, 120 male 3-week-old ICR mice were randomly divided into four groups: control group (C), exercise group (E), fluoride group (F), fluoride plus exercise group (F + E). After 8-week physical exercise and/or fluoride exposure, we evaluated the content of fluorine, the histopathological structure and microstructure of femur, bone metabolism biochemical indexes and oxidative stress related parameters, and the mRNA and protein levels of genes in BMP-2/Smads and OPG/RANKL/RANK signaling pathways. Our results showed that 100 mg/L NaF exposure increased the accumulation of fluoride in bone, altered histology of bone, and enhanced the activities of ALP and TRACP. Meanwhile, excessive fluoride induced oxidative stress in bone tissue by increasing the content of ROS and MDA, and decreasing the activities of antioxidant enzymes. In addition, the results of qRT-PCR suggested that NaF significantly increased the mRNA expression of BMP-2, Smad-5, Col IA1, Col IA2, OPG, RANKL and RANK, as well as the elevated proteins of OPG, RANKL and RANK. However, these fluoride-induced changes were alleviated after moderate exercise. Taken together, these findings indicated that moderate exercise decreased the toxicity of fluoride by reducing the accumulation of fluorine in the body to relieve the bone damage caused by fluorosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in the published article and its supplementary information files. The raw data of the paper are available upon request from the corresponding author.

References

  1. Peckham S, Awofeso N (2014) Water fluoridation: a critical review of the physiological effects of ingested fluoride as a public health intervention. Sci World J 2014:293019

    Article  Google Scholar 

  2. WHO World Health Organisation (2002) Fluorides Environmental Health Criteria 227. World Health Organization, Geneva

    Google Scholar 

  3. WHO World Health Organisation (2004) Fluoride in drinking water. IWA Publishing, London

    Google Scholar 

  4. WHO World Health Organization (2011) Guidelines for drinking water quality Volume 1.4th edition. World Health Organization, Geneva

    Google Scholar 

  5. Buzalaf MAR, Whitford GM (2011) Fluoride metabolism Monogr Oral Sci 22:20–36

    Article  PubMed  Google Scholar 

  6. Sharma D, Singh A, Verma K, Paliwa S, Sharma S, Dwivedi J (2017) Fluoride: a review of pre-clinical and clinical studies. Environ Toxicol Pharmacol 56:297–313

    Article  CAS  PubMed  Google Scholar 

  7. Herrera PK, Zambolin AP, Fernandes MS, Cestari TM, Iano FG, Zambuzzi WF, Buzalaf MAR, Oliveira RC (2017) Fluoride affects bone repair differently in mice models with distinct bone densities. J Trace Elem Med Bio 39:129–134

    Article  CAS  Google Scholar 

  8. Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90(5):552–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pramanik S, Saha D (2017) The genetic influence in fluorosis. Environ Toxicol Pharmacol 56:157–162

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Yin Y, Gilula LA, Wilson AJ (1994) Endemic fluorosis of the skeleton: radiographic features in 127 patients. AJR Am J Roentgenol 162:93–98

    Article  CAS  PubMed  Google Scholar 

  11. Guan Z (2015) Coal-burning type of endemic fluorosis. People’s Medical Publishing House, Beijing

    Google Scholar 

  12. Thivya C, Chidambaram S, Rao MS, Thilagavathi R, Manikandan S (2015) Assessment of fluoride contaminations in groundwater of hard rock aquifers in Madurai district, Tamil Nadu (India). Appl Water Sci 7:1011–1023

    Article  Google Scholar 

  13. Duan X, Xu H, Wang Y, Wang H, Li G, Jing L (2014) Expression of core-binding factor alpha1 and osteocalcin in fluoride-treated fibroblasts and osteoblasts. J Trace Elem Med Bio 28:278–283

    Article  CAS  Google Scholar 

  14. Gonciulea A, Beur SJ (2015) The dynamic skeleton. Rev Endocr Metab Disord 16:79–91

    Article  CAS  PubMed  Google Scholar 

  15. Chavassieux P, Seeman E, Delmas PD (2007) Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease. Endocr Rev 28:151–164

    Article  CAS  PubMed  Google Scholar 

  16. Han Y, Yu Y, Liang C, Shi Y, Zhu Y, Zheng H, Wang J, Zhang J (2019) Fluoride-induced unrestored arrest during haploid period of spermatogenesis via the regulation of DDX25 in rats. Environ Pollut 253:538–551

    Article  CAS  PubMed  Google Scholar 

  17. Turner CH, Garetto LP, Dunipace AJ, Zhang W, Wilson ME, Grynpas MD, Chachra D, McClintock R, Peacock M, Stookey GK (1997) Fluoride treatment increased serum IGF-1, bone turnover, and bone mass, but not bone strength, in rabbits. Calcif Tissue Int 61:77–83

    Article  CAS  PubMed  Google Scholar 

  18. Sun F, Li X, Yang C, Lv P, Li G, Xu H (2014) A role for PERK in the mechanism underlying fluoride-induced bone turnover. Toxicology 325:52–66

    Article  CAS  PubMed  Google Scholar 

  19. Ma Y, Yao Y, Zhong N, Angwa LM, Pei J (2020) The dose-time effects of fluoride on the expression and DNA methylation level of the promoter region of BMP-2 and BMP-7 in rats. Environ Toxicol Pharmacol 75:103331

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Yang J, Cheng X, Xiao R, Zhao Y, Xu H, Zhu Y, Yan Z, Ommati MM, Manthari RK, Wang J (2019) Calcium alleviates fluoride-induced bone damage by inhibiting endoplasmic reticulum stress and mitochondrial dysfunction. J Agric Food Chem 67:10832–10843

    Article  CAS  PubMed  Google Scholar 

  21. Yan X, Hao X, Nie Q, Feng C, Wang H, Sun Z, Niu R, Wang J (2015) Effects of fluoride on the ultrastructure and expression of type I collagen in rat hard tissue. Chemosphere 128:36–41

    Article  CAS  PubMed  Google Scholar 

  22. Neufer PD, Bamman MM, Muoio DM, Bouchard C, Cooper DM, Goodpaster BH, Booth FW, Kohrt WM, Gerszten RE, Mattson MP, Hepple RT, Kraus WE, Reid MB, Bodine SC, Jakicic JM, Fleg JL, Williams JP, Joseph L, Evans M, Maruvada P, Rodgers M, Roary M, Boyce AT, Drugan JK, Koenig JI, Ingraham RH, Krotoski D, Garcia-Cazarin M, McGowan JA, Laughlin MR (2015) Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab 22:4–11

    Article  CAS  PubMed  Google Scholar 

  23. Banu J, Bhattacharya A, Rahman M, Fernandes G (2008) Beneficial effects of conjugated linoleic acid and exercise on bone of middle-aged female mice. J Bone Miner Metab 26:436–445

    Article  CAS  PubMed  Google Scholar 

  24. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, O’Karma M, Wallace TC, Zemel BS (2016) The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27:1281–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwamoto J, Takeda T, Ichimura S (1998) Effects of exercise on bone mineral density in mature osteopenic rats. J Bone Miner Res 13:1308–1317

    Article  CAS  PubMed  Google Scholar 

  26. Peng Z, Vaananen HK, Tuukkanen J (1997) Ovariectomy-induced bone loss can be affected by different intensities of treadmill running exercise in rats. Calcif Tissue Int 60(5):441–448

    Article  CAS  PubMed  Google Scholar 

  27. Tamaki H, Akamine T, Goshi N, Kurata H, Sakou T (1998) Effects of exercise training and etidronate treatment on bone mineral density and trabecular bone in ovariectomized rats. Bone 23:147–153

    Article  CAS  PubMed  Google Scholar 

  28. Wallace JM, Rajachar RM, Allen MR, Bloomfield SA, Robey PG, Young MF, Kohn DH (2007) Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific. Bone 40:1120–1127

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guo Z, Niu R, Sun Z, Wang J, Zhang J (2018) Effects of physical exercise on the mRNA expression of RANKL, OPG, OSX, and RUNX2-1 in the femurs of mice exposed to the fluoride ion. Fluoride 51(1):58–64

    CAS  Google Scholar 

  30. Wang J, Yue B, Zhang X, Guo X, Sun Z, Niu R (2021) Effect of exercise on microglial activation and transcriptome of hippocampus in fluorosis mice. Sci Total Environ 760:143376

    Article  CAS  PubMed  Google Scholar 

  31. Dean HT (1934) Classification of mottled enamel diagnosis. J Am Dent Assoc 21:1421–1426

    Google Scholar 

  32. Amaral SL, Azevedo LB, Buzalaf MAR, Fabricio MF, Fernandes MS, Valentine RA, Maguire A, Zohoori FV (2018) Effect of chronic exercise on fluoride metabolism in fluorosis-susceptible mice exposed to high fluoride. Sci Rep 8:3211

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yan D, Gurumurthy A, Wright M, Pfeiler TW, Loboa EG, Everett ET (2007) Genetic background influences fluoride’s effects on osteoclastogenesis. Bone 41:1036–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Narsimha A, Sudarshan V (2017) Assessment of fluoride contamination in groundwater from Basara, Adilabad District, Telangana State. India Appl Water Sci 7:2717–2725

    Article  CAS  Google Scholar 

  35. Narsimha A, Sudarshan V (2017) Contamination of fluoride in groundwater and its effect on human health: a case study in hard rock aquifers of Siddipet, TelanganaState. India Appl Water Sci 7:2501–2512

    Article  CAS  Google Scholar 

  36. Gunter KB, Almstedt HC, Janz KF (2012) Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev 40:13–21

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bronckers ALJJ, Lyaruu DM, Denbesten PK (2009) The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. J Dent Res 88:877–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guner S, Uyar-Bozkurt S, Haznedaroglu E, Mentes A (2016) Dental fluorosis and catalase immunoreactivity of the brain tissues in rats exposed to high fluoride pre- and postnatally. Biol Trace Elem Res 174:150–157

    Article  CAS  PubMed  Google Scholar 

  39. Linhares D, Camarinho R, Garcia PV, Rodrigues ADS (2018) Mus musculus bone fluoride concentration as a useful biomarker for risk assessment of skeletal fluorosis in volcanic areas. Chemosphere 205:540–544

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Zhang Y, Liang C, Wang N, Zheng H, Wang J (2016) Choline supplementation alleviates fluoride-induced testicular toxicity by restoring the NGF and MEK expression in mice. Toxicol Appl Pharmacol 310:205–214

    Article  CAS  PubMed  Google Scholar 

  41. Grynpas MD (1990) Fluoride effects on bone crystals. J Bone Miner Res 5:169–175

    Article  Google Scholar 

  42. Wei Y, Zeng B, Zhang H, Chen C, Wu Y, Wang N, Wu Y, Zhao D, Zhao Y, Iqbal J, Shen L (2018) Comparative proteomic analysis of fluoride treated rat bone provides new insights into the molecular mechanisms of fluoride toxicity. Toxicol Lett 291:39–50

    Article  CAS  PubMed  Google Scholar 

  43. Chen S, Li B, Lin S, Huang Y, Zhao X, Zhang M, Xia Y, Fang X, Wang J, Hwang S, Yu S (2013) Change of urinary fluoride and bone metabolism indicators in the endemic fluorosis areas of southern China after supplying low fluoride public water. BMC Public Health 13:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang D, Wang Z, Qi W, Zhao G (2014) The effects of Cordycepssinensis phytoestrogen on estrogen deficiency-induced osteoporosis in ovariectomized rats. BMC Complement Altern Med 14:484

    Article  PubMed  PubMed Central  Google Scholar 

  45. Varol E, Icli A, Aksoy F, Bas HA, Sutcu R, Ersoy IH, Varol S, Ozaydin M (2013) Evaluation of total oxidative status and total antioxidant capacity in patients with endemic fluorosis. Toxicol Ind Health 29:175–180

    Article  CAS  PubMed  Google Scholar 

  46. Mohamed NE (2016) The role of calcium in ameliorating the oxidative stress of fluoride in rats. Biol Trace Elem Res 170:128–144

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, Zhao W, Liu J, Tan P, Zhang C, Zhou B (2017) Fluoride-induced oxidative stress and apoptosis are involved in the reducing of oocytes development potential in mice. Chemosphere 186:911–918

    Article  CAS  PubMed  Google Scholar 

  48. Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  PubMed  Google Scholar 

  49. Chlubek D (2003) Fluoride and oxidative stress. Fluoride 36:217–228

    CAS  Google Scholar 

  50. Flora SJS, Mittal M, Pachauri V, Dwivedi N (2012) A possible mechanism for combined arsenic and fluoride induced cellular and DNA damage in mice. Metallomics 4:78–90

    Article  CAS  PubMed  Google Scholar 

  51. Bouzinova EV, Norregaard R, Boedtkjer DMB, Razgovorova IA, Moeller AMJ, Kudryavtseva O, Wiborg O, Aalkjaer C, Matchkov VV (2014) Association between endothelial dysfunction and depression-like symptoms in chronic mild stress model of depression. Psychosom Med 76:268–276

    Article  CAS  PubMed  Google Scholar 

  52. Katagiri T, Takahashi N (2002) Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 8:147–159

    Article  CAS  PubMed  Google Scholar 

  53. Li H, Nie B, Du Z, Zhang S, Long T, Yue B (2018) Bacitracin promotes osteogenic differentiation of human bone marrow mesenchymal stem cells by stimulating the bone morphogenetic protein-2/Smad axis. Biomed Pharmacother 103:588–597

    Article  CAS  PubMed  Google Scholar 

  54. Li Z, Wei W, Xu H, Ning Y, Fang W, Liao W, Zou J, Yang Y, Shao N (2017) Effects of altered CXCL12/CXCR4 axis on BMP2/Smad/Runx2/Osterix axis and osteogenic gene expressions during osteogenic differentiation of MSCs. Am J Transl Res 9:1680–1693

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang X, Aubin JE, Inman RD (2003) Molecular and cellular biology of new bone formation: insights into the ankylosis of ankylosing spondylitis. Curr Opin Rheumatol 15:387–393

    Article  PubMed  Google Scholar 

  56. Bruderer M, Richards RG, Alini M, Stoddart MJ (2014) Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater 28:269–286

    Article  CAS  PubMed  Google Scholar 

  57. Jadai R, Venna N, Ajumeera R, Challa S (2019) Isoflavones rich cowpea and vitamin D induces the proliferation and differentiation of human osteoblasts via BMP/Smad pathway activation: mechanistic approach. IUBMB Life 71:1794–1805

    Article  CAS  PubMed  Google Scholar 

  58. Horcajada M, Offord E (2012) Naturally plant-derived compounds: role in bone anabolism. Curr Mol Pharmacol 5:205–218

    Article  CAS  PubMed  Google Scholar 

  59. Miosge N, Hartmann M, Maelicke C, Herken R (2004) Expression of collagen type I and type II in consecutive stages of human osteoarthritis. Histochem Cell Biol 122:229–236

    Article  CAS  PubMed  Google Scholar 

  60. Menuki K, Mori T, Sakai A, Sakuma M, Okimoto N, Shimizu Y, Kunugita N, Nakamura T (2008) Climbing exercise enhances osteoblast differentiation and inhibits adipogenic differentiation with high expression of PTH/PTHrP receptor in bone marrow cells. Bone 43:613–620

    Article  CAS  PubMed  Google Scholar 

  61. Wang BL, Dai CL, Quan JX, Zhu ZF, Zheng F, Zhang HX, Guo SY, Guo G, Zhang JY, Qiu MC (2006) Parathyroid hormone regulates osterix and runx2 mrna expression predominantly through protein kinase a signaling in osteoblast-like cells. J Endocrinol Invest 29:101–108

    Article  CAS  PubMed  Google Scholar 

  62. Teerapornpuntakit J, Wongdee K, Krishnamra N, Charoenphandhu N (2016) Expression of osteoclastogenic factor transcripts in osteoblast-like UMR-106 cells after exposure to FGF-23 or FGF-23 combined with parathyroid hormone. Cell Biol Int 40:329–340

    Article  CAS  PubMed  Google Scholar 

  63. Yanai R, Tetsuo F, Ito S, Itsumi M, Yoshizumi J, Maki T, Mori Y, Kubota Y, Kajioka S (2019) Extracellular calcium stimulates osteogenic differentiation of human adipose-derived stem cells by enhancing bone morphogenetic protein-2 expression. Cell Calcium 83:102058

    Article  CAS  PubMed  Google Scholar 

  64. Shen S, Wang W, Yang C, Xu B, Zeng L, Qian Y (2018) Effect of technetium-99 conjugated with methylene diphosphonate (99Tc-MDP) on OPG/RANKL/RANK system in vitro. J Oral Pathol Med 48:129–135

    PubMed  Google Scholar 

  65. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    Article  CAS  PubMed  Google Scholar 

  66. Teitelbaum SL (2000) Bone Resorption by Osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  67. Znorko B, Pawlak D, Oksztulska-Kolanek E, Domaniewski T, Pryczynicz A, Roszczenko A, Rogalska J, Lipowicz P, Doroszko M, Brzoska MM, Pawlak K (2018) RANKL/OPG system regulation by endogenous PTH and PTH1R/ATF4 axis in bone: implications for bone accrual and strength in growing rats with mild uremia. Cytokine 106:19–28

    Article  CAS  PubMed  Google Scholar 

  68. Klejna K, Naumnik B, Gasowska K, Mysliwiec M (2009) OPG/RANK/RANKL signaling system and its significance in nephrology. Folia HistochemCytobiol 47:199–206

    Google Scholar 

  69. Sato M, Hanmoto T, Yachiguchi K, Tabuchi Y, Kondo T, Endo M, Kitani Y, Sekiguchi T, Urata M, Hai TN, Srivastav AK, Mishima H, Hattori A, Suzuki N (2016) Sodium fluoride induces hypercalcemia resulting from the upregulation of both osteoblastic and osteoclastic activities in goldfish, Carassiusauratus. Comp Biochem Phys C-Toxicol Pharmacol 189:54–60

    Article  CAS  Google Scholar 

  70. Bergstrom I, Parini P, Gustafsson SA, Andersson G, Brinck J (2012) Physical training increases osteoprotegerin in postmenopausal women. J Bone Miner Metab 30:202–207

    Article  PubMed  Google Scholar 

  71. Stringhetta-garcia CT, Singulani MP, Santos LF, Louzada MJQ, Nakamune ACS, Chaves-Neto AH, Rossi AC, Ervolino E, Dornelles RCM (2016) The effects of strength training and raloxifene on bone health in aging ovariectomizedrats[J]. Bone 85:45–54

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was sponsored by the Research Project Supported by Shanxi Scholarship Council of China (HGKY2019042) and the Program for the Top Young Innovative Talents of Shanxi Agricultural University (TYIT201408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilong Sun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3144 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Gong, Z., Yu, Y. et al. Alleviative Effects of Exercise on Bone Remodeling in Fluorosis Mice. Biol Trace Elem Res 200, 1248–1261 (2022). https://doi.org/10.1007/s12011-021-02741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02741-y

Keywords

Navigation