Skip to main content

Advertisement

Log in

Brain Boron Level, DNA Content, and Myeloperoxidase Activity of Metformin-Treated Rats in Diabetes and Prostate Cancer Model

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, the effect of metformin on boron levels and oxidative brain damage in rats due to diabetes and prostate cancer was investigated for the first time. Myeloperoxidase (MPO) activity and the amount of DNA were investigated as tissue oxidative and toxic damage parameters. In Copenhagen rats, Dunning prostate cancer was induced using high metastatic MAT-Lylu cells and diabetes was induced by single dose of streptozotocin (STZ) injection. Metformin was administered for 14 days after diabetes and prostate cancer induced. The rats were divided into six groups as follows: control group, diabetic group (D), cancer group (C), diabetic + cancer (DC) group, cancer + metformin (CM) group, diabetic + cancer + metformin (DCM) group. At the end of the experiment, brains were removed. Significant decrease of brain boron levels and significant elevation of MPO activity and DNA levels were observed in D, C, and DC groups as compared to control group. The effect of diabetes induction on the brain boron levels was much more than prostate cancer induction. The administration of metformin with CM and DCM obviously declined MPO activity and increased brain boron levels almost near to control group level. In conclusion, this study shows that the protective effect of metformin against brain damage in STZ-induced diabetic rats with Dunning prostate cancer may also be related to increased boron levels. The boron levels may be a novel indicator of reduced toxic and oxidative stress. Furthermore, the distribution and mechanism of action of boron should be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Giovannucci E, Harlan DM, Archer MC (2010) Diabetes and cancer: a consensus report. Diabetes Care 33(7):1674–1685. https://doi.org/10.2337/dc10-0666

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kim HJ, Lee SJ, Chun KH, Jeon JY, Han SJ, Kim DJ, Kim YS, Woo JT, Nam MS, Baik SH, Ahn KJ, Lee KW (2018) Metformin reduces the risk of cancer in patients with type 2 diabetes: an analysis based on the Korean National Diabetes Program Cohort. Medicine 97:e0036. https://doi.org/10.1097/MD.0000000000010036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuo YJ, Sung FC, Hsieh PF, Chang HP, Kun-Ling Wu KL, Wu HC (2019) Metformin reduces prostate cancer risk among men with benign prostatic hyperplasia: a nation wide population-based cohort study. Cancer Med 8:2514–2523. https://doi.org/10.1002/cam4.2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zaidi S, Gandhi J, Joshi G, Smith NL, Khan SA (2019) The anticancer potential of metformin on prostate cancer. Prostate Cancer Prostatic Dis 22(3):351–361. https://doi.org/10.1038/s41391-018-0085-2

    Article  PubMed  Google Scholar 

  5. Navone N, Logothetıs CJ, Von-Eschenbach AC, Troncoso P (1999) Model systems of prostate cancer: uses and limitations. Cancer Metastasis Rev 17:361–371

    Article  CAS  Google Scholar 

  6. Pienta KJ, Abate-Shen C, Agus DB, Attar RM, Chung LWK, Greenberg NM, Hahn WC, Isaacs JT, Navone NM, Peehl DM, Simons JW, Solit DB, Soule HR, VanDyke TA, Weber MJ, Wu L, Vessella RL (2008) The current state of preclinical prostate cancer animal models. Prostate 68(6):629–639. https://doi.org/10.1002/pros.20726

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tennant TR, Kim H, Sokolof M, Rinker-Schaeffer CW (2000) The Dunning model. Prostate 43(4):295–302

    Article  CAS  Google Scholar 

  8. Yıldırım S, Altun S, Gumushan H, Patel A, Djamgoz MBA (2012) Voltage-gated sodium channel activity promotes prostate cancer metastasis in vivo. Cancer Lett 323(1):58–61. https://doi.org/10.1016/j.canlet.2012.03.036

    Article  CAS  PubMed  Google Scholar 

  9. Bugan I, Karagoz Z, Altun S, Djamgoz MBA (2016) Gabapentin, an analgesic used against cancer-associated neuropathic pain: effects on prostate cancer progression in an in vivo rat model. BCPT. 118(3):200–207. https://doi.org/10.1111/bcpt.12484

    Article  CAS  Google Scholar 

  10. Hunter JM, Nemzer BV, Rangavaila N, Bita A, Rogoveanu OC, Neamtu J, Scorei IR, Bejenaru LE, Rau G, Bejenaru C, Dan MG (2019) The fructoborates: part of a family of naturally occurring sugar-borate complexes-biochemistry, physiology, and impact on human health: a review. Biol Trace Elem Res 188(1):11–25. https://doi.org/10.1007/s12011-018-1550-4

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen FH, Eckhert C (2020) Boron Adv Nutr 11:461–462. https://doi.org/10.1093/advances/nmz110

    Article  PubMed  Google Scholar 

  12. Pizzorno L (2015) Nothing boring about boron. Integr Med 14:35–48

    Google Scholar 

  13. Nielsen FH (2014) Update on human health effects of boron. J Trace Elem Med Biol 28:383–387. https://doi.org/10.1016/j.jtemb.2014.06.023

    Article  CAS  PubMed  Google Scholar 

  14. Ince S, Kucukkurt I, Cigerci IH, Fatih Fidan A, Eryavuz A (2010) The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. J Trace Elem Med Biol 24(3):161–164. https://doi.org/10.1016/j.jtemb.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  15. Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 94(1):437–444. https://doi.org/10.1172/JCI117342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malle E, Furtmüller PG, Sattler W, Obinger C (2007) Myeloperoxidase: a target for new drug development? Br J Pharmacol 152(6):838–854. https://doi.org/10.1038/sj.bjp.0707358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Unubol M, Yavasoglu I, Kacar F, Guney E, Omurlu IK, Ture M, Kadikoylu G, Bolaman Z (2015) Relationship between glycemic control and histochemical myeloperoxidase activity in neutrophils in patients with type 2 diabetes. Diabetol Metab Syndr 7:119. https://doi.org/10.1186/s13098-015-0115-3 eCollection 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grimes JA, Fraser SP, Stephence GJ, Downing JE, Laniado ME, Foster CS, Abel PD, Djamgoz MB (1995) Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett 369(2- 3):290–294. https://doi.org/10.1016/0014-5793(95)00772-2

    Article  CAS  PubMed  Google Scholar 

  19. Mossine V, Chopra P, Mawhinney TP (2008) Interaction of tomato lycopene and ketosamine against rat prostate tumorigenesis. Cancer Res 68(11):4384–4391. https://doi.org/10.1158/0008-5472.CAN-08-0108

    Article  CAS  PubMed  Google Scholar 

  20. Kuru R, Yilmaz S, Tasli PN, Yarat A, Sahin F (2019) Boron content of some foods consumed in Istanbul, Turkey. Biol Trace Elem Res 187:1–8. https://doi.org/10.1007/s12011-018-1319-9

    Article  CAS  PubMed  Google Scholar 

  21. Hatcher JT, Wilcox LV (1950) Colorimetric determination of boron using carmine. Anal Chem 22:567–569. https://doi.org/10.1021/ac60040a017

    Article  CAS  Google Scholar 

  22. Wei H, Frenkel K (1991) In vivo formation of oxidized DNA bases in tumor promoter-treated mouse skin. Cancer Res 51:4443–4449

    CAS  PubMed  Google Scholar 

  23. Burton K (1956) A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62(2):315–323. https://doi.org/10.1042/bj0620315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  25. Pernicova I, Korbonits M (2014) Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10:143–156. https://doi.org/10.1038/nrendo.2013.256

    Article  CAS  PubMed  Google Scholar 

  26. An H, He L (2016) Current understanding of metformin effect on the control of hyperglycemia in diabetes. J Endocrinol 228(3):97–106. https://doi.org/10.1530/JOE-15-0447

    Article  CAS  Google Scholar 

  27. Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585. https://doi.org/10.1007/s00125-017-4342-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bayrak BB, Koroglu P, Bulan Karabulut O, Yanardag R (2021) Metformin protects against diabetes–induced heart injury and dunning prostate cancer model. Hum Exp Toxicol 40:297–309. https://doi.org/10.1177/0960327120947452

    Article  CAS  PubMed  Google Scholar 

  29. Koroglu P, Karabulut-Bulan O, Bugan I, Turkyilmaz IB, Altun S, Yanardag R. The protective effect of metformin against testicular damage in diabetes and prostate cancer model. Biologia (in press)

  30. Li W, Chaudhari K, Shetty R, Winters A, Gao X, Hu Z, Ge WP, Sumien N, Forster M, Liu R, Yang SH (2019) Metformin alters locomotor and cognitive function and brain metabolism in normoglycemic mice. Aging Dis 10(5):949–963. https://doi.org/10.14336/AD.2019.0120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sanadgol N, Barati M, Houshmand F, Hassani S, Clarner T, Shahlaei M, Golab F (2020) Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol Rep 72(3):641–658. https://doi.org/10.1007/s43440-019-00019-8

    Article  CAS  PubMed  Google Scholar 

  32. Moreira PI (2014) Metformin in the diabetic brain: friend or foe? Ann Transl Med 2(6):54,1–54,3. https://doi.org/10.3978/j.issn.2305-5839.2014.06.10

    Article  CAS  Google Scholar 

  33. Ghasemi AS, Taghartapeh MR, Soltani A, Mahon PJ (2019) Adsorption behavior of metformin drug on boron nitride fullerenes: thermodynamics and DFT studies. J Mol Liq 275(1):955–967. https://doi.org/10.1016/j.molliq.2018.11.124

    Article  CAS  Google Scholar 

  34. Khaliq H, Juming Z, Ke-Mei P (2018) The physiological role of boron on health. Biol Trace Elem Res 186(1):31–51. https://doi.org/10.1007/s12011-018-1284-3

    Article  CAS  PubMed  Google Scholar 

  35. Kuru R, Yılmaz S, Balan G, Alev Tuzuner B, Tasli PN, Akyuz S, Yener Ozturk F, Altuntas Y, Yarat A, Sahin F (2019) Boron-rich diet may regulate blood lipid profile and prevent obesity: a non-drug and self-controlled clinical trial. JTEMB. 54:191–198. https://doi.org/10.1016/j.jtemb.2019.04.021

    Article  CAS  Google Scholar 

  36. Uluisik I, Karakaya HC, Koc A (2018) The importance of boron in biological systems. J Trace Elem Med Biol 45:156–162. https://doi.org/10.1016/j.jtemb.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  37. Demirdogen RE (2020) Relationship among blood boron level, diabetes mellitus, lipid metabolism, bone metabolism and obesity: can boron be an efficient indicator for metabolic diseases. Health Sci J 14(1):689. https://doi.org/10.36648/1791-809X.14.1.689

    Article  Google Scholar 

  38. Kot FS (2009) Boron sources, speciation and its potential impact on health. Rev Environ Sci Biotechnol 8:3–28

    Article  CAS  Google Scholar 

  39. Nielsen FH, Meacham SL (2011) Growing evidence for human health benefits of boron. JEBCAM. 16:169–180. https://doi.org/10.1177/2156587211407638

    Article  CAS  Google Scholar 

  40. Hunt CD (1998) Regulation of enzymatic activity. Biol Trace Elem Res 66:205–225. https://doi.org/10.1007/BF02783139

    Article  CAS  PubMed  Google Scholar 

  41. Penland JG (1994) Dietary boron, brain function, and cognitive performance. Environ Health Perspect 102:65–72. https://doi.org/10.1289/ehp.94102s765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nielsen FH, Penland JG (2006) Boron deprivation alters rat behaviour and brain mineral composition differently when fish oil instead of safflower oil is the diet fat source. Nutr Neurosci 9:105–112. https://doi.org/10.1080/10284150600772189

    Article  CAS  PubMed  Google Scholar 

  43. Kelly GS (1997) Boron: a review of its nutritional interactions and therapeutic uses. Altern Med 2:48–56

    Google Scholar 

  44. Meacham S, Karakas S, Wallace A, Altun F (2010) Boron in human health: evidence for dietary recommendations and public policies. Open Miner Process J 3:36–53. https://doi.org/10.2174/1874841401003010036

    Article  CAS  Google Scholar 

  45. Warrington K (1923) The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot 37:629–672. https://doi.org/10.1093/oxfordjournals.aob.a089871

    Article  Google Scholar 

  46. Nielsen FH, Hunt CD, Mullen LM, Hunt JR (1987) Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women. FASEB J 1:394–397

    Article  CAS  Google Scholar 

  47. Hunt CD (2010) Boro. In: Coates PM, Blackman MR, Cragg GM, Levine M, Moss J, White JD (eds) Encyclopedia of Dietary Supplements, 2nd edn. Marcel Dekker, New York, pp 55–65

    Google Scholar 

  48. Coban FK, Ince S, Kucukkurt I, Demirel HH, Hazman O (2015) Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug Chem Toxicol 38(4):391–399. https://doi.org/10.3109/01480545.2014.974109

    Article  CAS  PubMed  Google Scholar 

Download references

Data availability (data transparency)

Not applicable

Code availability (software application or custom code)

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Armagan Begüm Özel: investigation, methodology, resources, writing-original draft, writing-review and editing, visualization. Eda Dagsuyu: methodology, resources, writing-review and editing, visualization. Pınar Koroglu Aydın: methodology, resources. Ilknur Bugan: methodology, resources. Omur Karabulut Bulan: methodology, resources, supervision. Refiye Yanardag: conceptualization, methodology, resources, writing-review and editing, supervision. Aysen Yarat: conceptualization, methodology, formal analysis, resources, writing-original draft, writing-review and editing, supervision.

Corresponding author

Correspondence to Aysen Yarat.

Ethics declarations

The experiments were carried out according to the guiding principles in the use of experimental animals and approved by the Istanbul University Animal Care and Use Committee (2014/28 - ethics committee decision number)

Ethics Approval (include appropriate approvals or waivers)

The ethical approval was obtained Istanbul University Animal Care and Use Committee (2014/28 - ethics committee decision number).

Consent to participate (include appropriate statements)

Not applicable.

Consent for Publication (include appropriate statements)

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The first study on the brain boron level in metformin treated rats in diabetes and prostate cancer model.

• Metformin’s protective effect against brain tissue may also be related to increasing boron levels.

• Increased brain boron level is an important factor to reduce oxidative stress.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozel, A.B., Dagsuyu, E., Aydın, P.K. et al. Brain Boron Level, DNA Content, and Myeloperoxidase Activity of Metformin-Treated Rats in Diabetes and Prostate Cancer Model. Biol Trace Elem Res 200, 1164–1170 (2022). https://doi.org/10.1007/s12011-021-02708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02708-z

Keywords

Navigation