Skip to main content

Advertisement

Log in

Determination of the Fluoride Content in Water of Aqueducts of Cauca (Colombia) by Ion Exchange Chromatography

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Water for human consumption is the main source of fluoride exposure. The concentration in water should not exceed 1 mg/L of fluoride since, at higher levels; it increases the risk of dental fluorosis, among other adverse effects. The fluoride content of 149 water samples from different aqueducts in Cauca (Colombia) has been determined by ion exchange chromatography with the aim of fluoride risk assessment. The rural area of the Municipality of Santander de Quilichao registered fluoride concentrations between 0.012 and 0.150 mg/L. The urban area of Santander de Quilichao recorded lower fluoride levels than the rural area (0.027–0.068 mg/L). The urban area of the Municipality of Cajibío registered fluoride levels of 0.082–0.186 mg/L. The highest levels of fluoride were found in Timbío (0.121–0.210 mg/L). The fluoride levels recorded in this study are not considered sufficient to trigger dental fluorosis. Likewise, optimal levels are not considered to protect the child population against dental caries. However, a monitoring plan of fluoride concentrations in water should be implemented to assure the quality and safe of the water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jagtap S, Kumar MK, Labhsetwar N, Rayalu S (2012) Fluoride in drinking water and defluoridation of water. Chem Rev 112(4):2454–2466. https://doi.org/10.1021/cr2002855

    Article  CAS  PubMed  Google Scholar 

  2. Hardisson A, Rodríguez MI, Burgos A, Diaz Flores L, Gutiérrez R, Varela H (2001) Fluoride levels in publicly supplied and bottled drinking water in the Island of Tenerife, Spain. Bull Environ Contam Toxicol 67(2):163–170

    Article  CAS  Google Scholar 

  3. Lin KY, LIU YT, Chen SY (2016) Adsorption of fluoride to UiO-66-NH2 in water: stability, kinetic, isotherm and thermodynamic studies. J Colloid Interface Sci 1(461):79–87. https://doi.org/10.1016/j.jcis.2015.08.061

    Article  CAS  Google Scholar 

  4. Touger-Decker R, Holt K, Krall EA, Nielsen FH (2001) Position of The American Dietetic association: the impact of fluoride on health. J Am Diet Assoc 101(1):126–132

    Article  Google Scholar 

  5. Khairnar MR, Dodamani AS, Jadhav HC, Naik RG, Deshmukh MA (2015) Mitigation of Fluorosis. A Review. J Clin Diagn Res 9(6 ZE0):5–9

    CAS  Google Scholar 

  6. DenBesten P, Li W (2011) Chronic fluoride toxicity: dental fluorosis. Monogr Oral Sci 22:81–96

    Article  Google Scholar 

  7. Cutress TW, Suckling GW (1990) Differential diagnosis of dental fluorosis. J Dent Res 69(2S):714–720

    Article  Google Scholar 

  8. Barbier O, Arreola-Mendoza L, Razo LMD (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Interact 188:319–333

    Article  CAS  Google Scholar 

  9. Lyaruu DM, Medina JF, Sarvide S, Bervoets TJM, Everts V, DenBesten P, Smith CE, Bronckers ALJJ (2014) Barrier formation: potential molecular mechanism of enamel fluorosis. J Dental Res 93(1):96–102. https://doi.org/10.1177/0022034513510944

    Article  CAS  Google Scholar 

  10. Zohoori FV, Innerd A, Azevedo LB, Whitford GM, Maguire A (2015) Effect of exercise on fluoride metabolism in adult humans: a pilot study. Sci Rep Sci Rep 19(5):16905. https://doi.org/10.1038/srep16905

    Article  CAS  Google Scholar 

  11. Anthonappa RP, King NM (2015) Enamel defects in the permanent dentition: prevalence and etiology. In: Drummond KBE, Kilpatrick N (eds) Planning and care for children and adolescents with dental enamel defects: etiology, research and contemporary management. Springer, Heidelberg, Berlin

    Google Scholar 

  12. Revelo-Mejía IA, Hardisson A, Rubio C, Gutiérrez AJ, Paz S (2020) Dental fluorosis: the risk of misdiagnosis—a Review. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02296-4

  13. Aoba T, Fejerskov O (2002) Dental fluorosis: chemistry and biology. Crit Rev Oral Biol Med 13(2):155–170

    Article  CAS  Google Scholar 

  14. Ministerio de la Protección Social de Colombia (2007) Decreto número 1575 de mayo 9 de 2007. Sistema para la Protección y Control de la Calidad del Agua para Consumo Humano. Availabe on: https://www.minambiente.gov.co/images/normativa/decretos/2007/dec_1775_2007.pdf. Accessed 9 Nov 2020

  15. Rodríguez Balseiro J, Cruz Gómez C, Álvarez Alonso A, Jarrosay Candó M, Crubellati RO, Carrizo MS, Gau G, Di Risio C (2011) Determinación de fluoruro, cloruro, nitrato y sulfato en aguas por cromatografía iónica con supresión química. V CONGRESO CUBANO DE MINERALOGÍA. La Habana, Cuba.

  16. Palmer C, Wolfe SH (2005) Position of the American Dietetic Association: the impact of fluoride on health. J Am Diet Assoc 105(10):1620–1628

    Article  Google Scholar 

  17. Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2006) Fluoride in drinking-water. Intl Water Assn. WHO Water Series 134–146

  18. Choubisa SL, Choubisa D (2015) Neighbourhood fluorosis in people residing in the vicinity of superphosphate fertilizer plants near Udaipur city of Rajasthan (India). Environ Monit Assess 187(8):497

    Article  Google Scholar 

  19. González-Sacramento N, Rubio Armendáriz C, Gutiérrez Fernández AJ, Luis González G, Hardisson de la Torre A, Revert Girones C (2015) El agua de consumo como fuente de exposición crónica a fluoruro en Tenerife; evaluación del riesgo. Nutr Hosp 31(4):1787–1794

    PubMed  Google Scholar 

  20. Yoder KM, Mabelya L, Robison VA, Dunipace AJ, Brizendine EJ Stookey GK (1998) Severe dental fluorosis in a Tanzanian population consuming water with negligible fluoride concentration. Community Dent Oral Epidemiol 26(6):382–393

    Article  CAS  Google Scholar 

  21. Awadia AK, Birkeland JM, Haugejorden O, Bjorvatn K (2000) An attempt to explain why Tanzanian children drinking water containing 0.2 or 3.6 mg fluoride per liter exhibit a similar level of dental fluorosis. Clin Oral Investig 4(4):238–244

    Article  CAS  Google Scholar 

  22. Benítez-Díaz P, Miranda-Contreras L (2013) Contaminación de aguas superficiales por residuos de plaguicidas en Venezuela y otros países de Latinoamérica. Rev Int Contam Ambie 29 (No. Sp)

  23. Pendrys DG (1999) Analytical studies of enamel fluorosis: methodological considerations. Epidemiol Rev 21(2):233–246. https://doi.org/10.1093/oxfordjournals.epirev.a017999

    Article  CAS  PubMed  Google Scholar 

  24. Pindborg JJ (1982) Aetiology of developmental enamel defects not related to fluorosis. Int Dent J 32(2):123–134

    CAS  PubMed  Google Scholar 

  25. Fejerskov O, Thylstrup A, Larsen MJ (1977) Clinical and structural features and possible pathogenic mechanisms of dental fluorosis. Eur J Oral Sci 85(7):510–534

    Article  CAS  Google Scholar 

  26. Sharma C, Suhalka P, Sukhwal P, Jaiswal N, Bhatnagar M (2014) Curcumin attenuates neurotoxicity induced by fluoride: an in vivo evidence. Pharmacogn Mag 10(37):61–65

    Article  CAS  Google Scholar 

  27. Zhu C, Guanglu B, Xiaoli L, Yue L (2006) Screening high-fluoride and high-arsenic drinking waters and surveying endemic fluorosis and arsenism in Shaanxi province in western China. Water Res 40:3015–3022

    Article  CAS  Google Scholar 

  28. Paz S, Jaudenes JR, Gutiérrez AJ, Rubio C, Hardisson A, Revert C (2017) Determination of fluoride in organic and non-organic wines. Biol Trace Elem Res 178:153–159. https://doi.org/10.1007/s12011-016-0910-1

    Article  CAS  PubMed  Google Scholar 

  29. Rubio C, Rodríguez I, Jaudenes JR, Gutiérrez AJ, Paz S, Burgos A, Hardisson A, Revert C (2020) Fluoride levels in supply water from a volcanic area in the Macaronesia region. Environ Sci Pollut Res 27:11587–11595. https://doi.org/10.1007/s11356-020-07702-x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraya Paz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revelo-Mejía, I.A., Enríquez, D., Espinosa, D. et al. Determination of the Fluoride Content in Water of Aqueducts of Cauca (Colombia) by Ion Exchange Chromatography. Biol Trace Elem Res 199, 4867–4875 (2021). https://doi.org/10.1007/s12011-020-02569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02569-y

Keywords

Navigation