Skip to main content

Advertisement

Log in

Intrahippocampal Effects of Nickel Injection on the Affective and Cognitive Response in Wistar Rat: Potential Role of Oxidative Stress

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study focused on affective and cognitive behaviors in male Wistar rats, following direct and unique exposure to nickel chloride (NiCl2), as well as the possible involvement of oxidative stress. The rats were exposed to NiCl2 (300 μM), by intracerebral administration of 2 μL of this metal at the right hippocampus, using the stereotaxic approach. Five days after the surgery, a battery of behavioral tests was performed, including the open-field test (OFT) and elevated plus maze test (EPM) to assess the state of anxiety-like behavior and forced swimming test (FST) for depressive-like behavior. Y-maze and Morris Water Maze (MWM) were used to evaluate working memory and spatial learning. Thereafter, oxidative stress markers of the hippocampus were evaluated. The results confirm that NiCl2 exerts anxiogenic effects in both anxiety tests and depressogenic effects in the FST. In addition, MWM and Y-maze data show that NiCl2 causes memory and spatial learning disorders. The biochemical assay results showed that intrahippocampal injection of NiCl2 increased the levels of nitric oxide and lipid peroxidation (p < 0.001), while the activities of catalase and superoxide dismutase were significantly decreased in the hippocampus (p < 0.01). Overall, these results suggest that NiCl2 causes affective and cognitive disorders and oxidative stress in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Turna Demir F, Yavuz M (2020) Heavy metal accumulation and genotoxic effects in levant vole (Microtus guentheri) collected from contaminated areas due to mining activities. Environ Pollut 256:113378. https://doi.org/10.1016/j.envpol.2019.113378

    Article  CAS  PubMed  Google Scholar 

  2. Zhen H, Jia L, Huang C, Qiao Y, Li J, Li H et al (2020) Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. Environ Pollut 263:114552. https://doi.org/10.1016/j.envpol.2020.114552

    Article  CAS  PubMed  Google Scholar 

  3. Gorini F, Muratori F, Morales MA (2014) The role of heavy metal pollution in neurobehavioral disorders: a focus on autism. Rev J Autism Dev Disord 1(4):354–372. https://doi.org/10.1007/s40489-014-0028-3

    Article  Google Scholar 

  4. Lamtai M, Chaibat J, Ouakki S, Zghari O, Mesfioui A, El Hessni A et al (2018) Effect of chronic administration of nickel on affective and cognitive behavior in male and female rats: possible implication of oxidative stress pathway. Brain Sci 8(8):141. https://doi.org/10.3390/brainsci8080141

    Article  CAS  PubMed Central  Google Scholar 

  5. Souza-Talarico JN, Marcourakis T, Barbosa F, Moraes Barros SB, Rivelli DP, Pompéia S et al (2017) Association between heavy metal exposure and poor working memory and possible mediation effect of antioxidant defenses during aging. Sci Total Environ 575:750–757. https://doi.org/10.1016/j.scitotenv.2016.09.121

    Article  CAS  PubMed  Google Scholar 

  6. Lamtai M, Chaibat J, Ouakki S, Berkiks I, Rifi E-H, Hessni AE et al (2018) Effect of chronic administration of cadmium on anxiety-like, depression-like and memory deficits in male and female rats: possible involvement of oxidative stress mechanism. J Behav Brain Sci 08:240. https://doi.org/10.4236/jbbs.2018.85016

    Article  CAS  Google Scholar 

  7. Lamtai M, Zghari O, Ouakki S, Marmouzi I, Mesfioui A, El Hessni A, Ouichou A (2020) Chronic copper exposure leads to hippocampus oxidative stress and impaired learning and memory in male and female rats. Toxicol Res 36(4):359–366. https://doi.org/10.1007/s43188-020-00043-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lamtai M, Azirar S, Zghari O, Ouakki S, El Hessni A, Mesfioui A, Ouichou A (2020) Melatonin ameliorates cadmium-induced affective and cognitive impairments and hippocampal oxidative stress in rat. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02247-z

  9. Zambelli B, Uversky VN, Ciurli S (2016) Nickel impact on human health: an intrinsic disorder perspective. Biochim Biophys Acta 1864(12):1714–1731. https://doi.org/10.1016/j.bbapap.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  10. Zdrojewicz Z, Popowicz E, Winiarski J (2016) Nickel - role in human organism and toxic effects. Pol Merkur Lekarski 41(242):115–118

    PubMed  Google Scholar 

  11. Bahadir Z, Ozdes D, Bulut VN, Duran C, Elvan H, Bektas H, Soylak M (2013) Cadmium and nickel determinations in some food and water samples by the combination of carrier element-free coprecipitation and flame atomic absorption spectrometry. Toxicol Environ Chem 95(5):737–746. https://doi.org/10.1080/02772248.2013.812730

    Article  CAS  Google Scholar 

  12. Cameron KS, Buchner V, Tchounwou PB (2011) Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: a literature review. Rev Environ Health 26(2):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Das KK, Das SN, Dhundasi SA (2008) Nickel, its adverse health effects & oxidative stress. Indian J Med Res 128(4):412–425

    CAS  PubMed  Google Scholar 

  14. Ulrich Harréus MD P, Baumeister P, Kleinsasser N, Reiter M, Bachmeier B, Matthias C (2007) Genotoxic effects of metals on human salivary gland tissue and lymphocytes as detected by the Comet assay. Toxicol Environ Chem 89(2):205–214. https://doi.org/10.1080/02772240601012804

    Article  CAS  Google Scholar 

  15. Xu S-C, He M-D, Zhong M, Zhang Y-W, Wang Y, Yang L et al (2010) Melatonin protects against Nickel-induced neurotoxicity in vitro by reducing oxidative stress and maintaining mitochondrial function. J Pineal Res 49(1):86–94. https://doi.org/10.1111/j.1600-079X.2010.00770.x

    Article  CAS  PubMed  Google Scholar 

  16. He M-D, Xu S-C, Zhang X, Wang Y, Xiong J-C, Zhang X et al (2013) Disturbance of aerobic metabolism accompanies neurobehavioral changes induced by nickel in mice. NeuroToxicology 38:9–16. https://doi.org/10.1016/j.neuro.2013.05.011

    Article  CAS  PubMed  Google Scholar 

  17. He M-D, Xu S-C, Lu Y-H, Li L, Zhong M, Zhang Y-W et al (2011) L-carnitine protects against nickel-induced neurotoxicity by maintaining mitochondrial function in Neuro-2a cells. Toxicol Appl Pharmacol 253(1):38–44. https://doi.org/10.1016/j.taap.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  18. Xu S-C, He M, Zhong M, Li L, Lu Y, Zhang Y et al (2015) The neuroprotective effects of taurine against nickel by reducing oxidative stress and maintaining mitochondrial function in cortical neurons. Neurosci Lett 590:52–57. https://doi.org/10.1016/j.neulet.2015.01.065

    Article  CAS  PubMed  Google Scholar 

  19. Ijomone OM, Olatunji SY, Owolabi JO, Naicker T, Aschner M (2018) Nickel-induced neurodegeneration in the hippocampus, striatum and cortex; an ultrastructural insight, and the role of caspase-3 and α-synuclein. J Trace Elem Med Biol 50:16–23. https://doi.org/10.1016/j.jtemb.2018.05.017

    Article  CAS  PubMed  Google Scholar 

  20. Bannerman DM, Rawlins JNP, McHugh SB, Deacon RMJ, Yee BK, Bast T et al (2004) Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28(3):273–283. https://doi.org/10.1016/j.neubiorev.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  21. Godsil BP, Kiss JP, Spedding M, Jay TM (2013) The hippocampal–prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol 23(10):1165–1181. https://doi.org/10.1016/j.euroneuro.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  22. Tang M, Huang H, Li S, Zhou M, Liu Z, Huang R et al (2019) Hippocampal proteomic changes of susceptibility and resilience to depression or anxiety in a rat model of chronic mild stress. Transl Psychiatry 9(1):1–12. https://doi.org/10.1038/s41398-019-0605-4

    Article  CAS  Google Scholar 

  23. Fatehyab S, Hasan M, Hasan MZ, Anwar J (1980) Effect of nickel on the levels of dopamine, noradrenaline and serotonin in different regions of the rat brain. Acta Pharmacol Toxicol 47(4):318–320

    CAS  Google Scholar 

  24. Jia C, Roman C, Hegg CC (2010) Nickel sulfate induces location-dependent atrophy of mouse olfactory epithelium: protective and proliferative role of purinergic receptor activation. Toxicol Sci 115(2):547–556. https://doi.org/10.1093/toxsci/kfq071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liapi C, Zarros A, Theocharis S, Voumvourakis K, Anifantaki F, Gkrouzman E et al (2011) Short-term exposure to nickel alters the adult rat brain antioxidant status and the activities of crucial membrane-bound enzymes: neuroprotection by L-cysteine. Biol Trace Elem Res 143(3):1673–1681. https://doi.org/10.1007/s12011-011-9006-0

    Article  CAS  PubMed  Google Scholar 

  26. Wu L, Gong W, Shen S-P, Wang Z-H, Yao J-X, Wang J et al (2017) Multiple metal exposures and their correlation with monoamine neurotransmitter metabolism in Chinese electroplating workers. Chemosphere 182:745–752. https://doi.org/10.1016/j.chemosphere.2017.04.112

    Article  CAS  PubMed  Google Scholar 

  27. Cenini G, Lloret A, Cascella R (2019) Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxidative Med Cell Longev 20:127–256. https://doi.org/10.1155/2019/2105607

    Article  CAS  Google Scholar 

  28. Ferry B, Gervasoni D, Vogt C (2014) Stereotaxic neurosurgery in laboratory rodent. Springer Paris, Paris. https://doi.org/10.1007/978-2-8178-0472-9

    Book  Google Scholar 

  29. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Burlington, MA: Academic, London Retrieved from http://site.ebrary.com/id/10360087

    Google Scholar 

  30. Durand M, Berton O, Aguerre S, Edno L, Combourieu I, Mormède P, Chaouloff F (1999) Effects of repeated fluoxetine on anxiety-related behaviours, central serotonergic systems, and the corticotropic axis axis in SHR and WKY rats. Neuropharmacology 38(6):893–907. https://doi.org/10.1016/S0028-3908(99)00009-X

    Article  CAS  PubMed  Google Scholar 

  31. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167. https://doi.org/10.1016/0165-0270(85)90031-7

    Article  CAS  PubMed  Google Scholar 

  32. Rodgers RJ, Haller J, Holmes A, Halasz J, Walton TJ, Brain PF (1999) Corticosterone response to the plus-maze: high correlation with risk assessment in rats and mice. Physiol Behav 68(1–2):47–53

    Article  CAS  PubMed  Google Scholar 

  33. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322. https://doi.org/10.1038/nprot.2007.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29(8):1193–1205. https://doi.org/10.1016/j.neubiorev.2005.04.017

    Article  CAS  PubMed  Google Scholar 

  35. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229(2):327–336

    CAS  PubMed  Google Scholar 

  36. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47(4):379–391

    Article  CAS  PubMed  Google Scholar 

  37. Mandillo S, Tucci V, Hölter SM, Meziane H, Banchaabouchi MA, Kallnik M et al (2008) Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. Physiol Genomics 34(3):243–255. https://doi.org/10.1152/physiolgenomics.90207.2008

    Article  PubMed  PubMed Central  Google Scholar 

  38. Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12(2):239–260. https://doi.org/10.1016/0023-9690(81)90020-5

    Article  Google Scholar 

  39. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60. https://doi.org/10.1016/0165-0270(84)90007-4

    Article  CAS  PubMed  Google Scholar 

  40. D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Research. Brain Res Rev 36(1):60–90

    Article  PubMed  Google Scholar 

  41. Camkurt MA, Fındıklı E, İzci F, Kurutaş EB, Tuman TC (2016) Evaluation of malondialdehyde, superoxide dismutase and catalase activity and their diagnostic value in drug naïve, first episode, non-smoker major depression patients and healthy controls. Psychiatry Res 238:81–85. https://doi.org/10.1016/j.psychres.2016.01.075

    Article  CAS  PubMed  Google Scholar 

  42. Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149(8):2736–2741

    CAS  PubMed  Google Scholar 

  43. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  44. Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161(2):559–566. https://doi.org/10.1016/0003-2697(87)90489-1

    Article  CAS  PubMed  Google Scholar 

  45. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  46. Majercikova Z, van Weering H, Scsukova S, Mikkelsen JD, Kiss A (2012) A new approach of light microscopic immunohistochemical triple-staining: combination of Fos labeling with diaminobenzidine-nickel and neuropeptides labeled with Alexa488 and Alexa555 fluorescent dyes. Endocr Regul 46(4):217–223

    Article  CAS  PubMed  Google Scholar 

  47. Rivas-Arancibia S, Hernández-Zimbrón LF, Rodríguez-Martínez E, Borgonio-Pérez G, Velumani V, Durán-Bedolla J (2013) Chronic exposure to low doses of ozone produces a state of oxidative stress and blood-brain barrier damage in the hippocampus of rat. Adv Biosci Biotechnol 04(11):24–29. https://doi.org/10.4236/abb.2013.411A2004

    Article  CAS  Google Scholar 

  48. Sampath D, Sathyanesan M, Newton S (2017) Cognitive dysfunction in major depression and Alzheimer’s disease is associated with hippocampus&ndash;prefrontal cortex dysconnectivity. Neuropsychiatr Dis Treat 13:1509–1519. https://doi.org/10.2147/NDT.S136122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kahloula K, Adli DEH, Slimani M, Terras H, Achour S (2014) Effet de l’exposition chronique au nickel sur les fonctions neurocomportementales chez les rats Wistar pendant la période de développement. Toxicol Anal Clin 26(4):186–192. https://doi.org/10.1016/j.toxac.2014.09.056

    Article  Google Scholar 

  50. Bockaert J, Bécamel C (2017) Contrôle de l’anxiété par les récepteurs de la sérotonine 5-HT2c de la strie terminale - Une explication des effets anxiogènes des inhibiteurs sélectifs de la recapture de la sérotonine (ISRS) ? Médecine/Sciences 33(1):87–89. https://doi.org/10.1051/medsci/20173301015

    Article  Google Scholar 

  51. Undurraga J, Baldessarini RJ (2017) Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: Systematic review and meta-analysis. J Psychopharmacol 31(9):1184–1189. https://doi.org/10.1177/0269881117711709

    Article  CAS  PubMed  Google Scholar 

  52. Nee DE, D’Esposito M (2018) The representational basis of working memory. Curr Top Behav Neurosci 37:213–230. https://doi.org/10.1007/7854_2016_456

    Article  PubMed  Google Scholar 

  53. Lalonde R (2002) The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev 26(1):91–104

    Article  CAS  PubMed  Google Scholar 

  54. Ijomone OM, Okori SO, Ijomone OK, Ebokaiwe AP (2018) Sub-acute nickel exposure impairs behavior, alters neuronal microarchitecture, and induces oxidative stress in rats’ brain. Drug Chem Toxicol 41(4):377–384. https://doi.org/10.1080/01480545.2018.1437173

    Article  CAS  PubMed  Google Scholar 

  55. Henriksson J, Tallkvist J, Tjälve H (1997) Uptake of nickel into the brain via olfactory neurons in rats. Toxicol Lett 91(2):153–162. https://doi.org/10.1016/S0378-4274(97)03885-X

    Article  CAS  PubMed  Google Scholar 

  56. Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory. Neuron 20(3):445–468. https://doi.org/10.1016/S0896-6273(00)80987-3

    Article  CAS  PubMed  Google Scholar 

  57. Eichenbaum H (2001) The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav Brain Res 127(1–2):199–207. https://doi.org/10.1016/S0166-4328(01)00365-5

    Article  CAS  PubMed  Google Scholar 

  58. MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H (2011) Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71(4):737–749. https://doi.org/10.1016/j.neuron.2011.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Topal A, Atamanalp M, Oruç E, Halıcı MB, Şişecioğlu M, Erol HS et al (2015) Neurotoxic effects of nickel chloride in the rainbow trout brain: Assessment of c-Fos activity, antioxidant responses, acetylcholinesterase activity, and histopathological changes. Fish Physiol Biochem 41(3):625–634. https://doi.org/10.1007/s10695-015-0033-1

    Article  CAS  PubMed  Google Scholar 

  60. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922. https://doi.org/10.1007/s10495-007-0756-2

    Article  CAS  PubMed  Google Scholar 

  61. Mazereeuw G, Herrmann N, Andreazza AC, Khan MM, Lanctôt KL (2015) A meta-analysis of lipid peroxidation markers in major depression. Neuropsychiatr Dis Treat 11:2479–2491. https://doi.org/10.2147/NDT.S89922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hall ED, Detloff MR, Johnson K, Kupina NC (2004) Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury. J Neurotrauma 21(1):9–20. https://doi.org/10.1089/089771504772695904

    Article  PubMed  Google Scholar 

  63. Kaehler ST, Singewald N, Sinner C, Philippu A (1999) Nitric oxide modulates the release of serotonin in the rat hypothalamus. Brain Res 835(2):346–349. https://doi.org/10.1016/s0006-8993(99)01599-1

    Article  CAS  PubMed  Google Scholar 

  64. Lorrain DS, Hull EM (1993) Nitric oxide increases dopamine and serotonin release in the medial preoptic area. Neuroreport 5(1):87–89

    Article  CAS  PubMed  Google Scholar 

  65. Segovia G, Porras A, Mora F (1994) Effects of a nitric oxide donor on glutamate and GABA release in striatum and hippocampus of the conscious rat. Neuroreport 5(15):1937–1940

    Article  CAS  PubMed  Google Scholar 

  66. Sanna MD, Monti M, Casella L, Roggeri R, Galeotti N, Morbidelli L (2015) Neuronal effects of a nickel-piperazine/NO donor complex in rodents. Pharmacol Res 99:162–173. https://doi.org/10.1016/j.phrs.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  67. Wegener G, Volke V, Rosenberg R (2000) Endogenous nitric oxide decreases hippocampal levels of serotonin and dopamine in vivo. Br J Pharmacol 130(3):575–580. https://doi.org/10.1038/sj.bjp.0703349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Perry JJP, Shin DS, Getzoff ED, Tainer JA (2010) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 1804(2):245–262. https://doi.org/10.1016/j.bbapap.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  69. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller A-F, Teixeira M, Valentine JS (2014) Superoxide dismutases and superoxide reductases. Chem Rev 114(7):3854–3918. https://doi.org/10.1021/cr4005296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Misra M, Rodriguez RE, Kasprzak KS (1990) Nickel induced lipid peroxidation in the rat: correlation with nickel effect on antioxidant defense systems. Toxicology 64(1):1–17

    Article  CAS  PubMed  Google Scholar 

  71. Ates B, Orun I, Talas ZS, Durmaz G, Yilmaz I (2008) Effects of sodium selenite on some biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) exposed to Pb2+ and Cu2+. Fish Physiol Biochem 34(1):53–59. https://doi.org/10.1007/s10695-007-9146-5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Yassine El Brouzi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

All animal experiments were carried out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the Animal Ethics Committee (Local Institutional Research Committee).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Brouzi, M.Y., Lamtai, M., Zghari, O. et al. Intrahippocampal Effects of Nickel Injection on the Affective and Cognitive Response in Wistar Rat: Potential Role of Oxidative Stress. Biol Trace Elem Res 199, 3382–3392 (2021). https://doi.org/10.1007/s12011-020-02457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02457-5

Keywords

Navigation